Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T20:18:20.896Z Has data issue: false hasContentIssue false

Self-Assembly of Organic-Inorganic Nanocomposite Coatings that Mimic the Structure of Shell

Published online by Cambridge University Press:  10 February 2011

Alan Sellinger
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106.
Pilar M. Weiss
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106.
Anh Nguyen
Affiliation:
University of New Mexico, Albuquerque, New Mexico 87185.
Yunfeng Lu
Affiliation:
University of New Mexico, Albuquerque, New Mexico 87185.
Roger A. Assink
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106.
C. Jeffrey Brinker
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106. University of New Mexico, Albuquerque, New Mexico 87185.
Get access

Abstract

After over a decade of research, the efficient synthesis and processing of layered organic/inorganic nanocomposites that mimic bone and shell structures remains an elusive goal of the materials chemist. We report on a rapid, efficient, continuous method to form layered nanocomposites via evaporation induced supramolecular self-assembly (SSA). During dip coating of a homogeneous sol containing alcohol or ether solvents, silica precursors, organic monomers, initiators and surfactant (at an initial concentration below cmc), solvent evaporation induces the formation of micellar structures that co-organize with silica to form cubic, hexagonal or lamellar mesophases. The organic monomers and initiators are solvated within the hydrophobic micellar interiors. Subsequent photo or thermal polymerization and washing results in a silica/polymer thin film nanocomposite. The microstructural and physical characteristics of these materials will be discussed in the context of potential applications as abrasion resistant coatings and optical hosts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Mann, S. Nature 1993, 365, 499505.Google Scholar
2) Heuer, A.; Fink, D.; Laraia, V.; Arias, J.; Calvert, P.; Kendall, K.; Messing, G.; Blackwell, J.; Rieke, P.; Thompson, D.; Wheeler, A.; Veis, A.; Caplan, A. Science 1992, 255, 10981105.10.1126/science.1546311Google Scholar
3) Jackson, A.; Vincent, J.; Turner, R. The mechanical design of nacre; 1277 ed.; Jackson, A.; Vincent, J.; Turner, R., Ed.: London, 1988; Vol. 234, pp 415-&.Google Scholar
4) Heywood, B.; Mann, S. Adv. Mater. 1994, 6, 919.Google Scholar
5) Fendler, J.; Meldrum, F. Adv. Mater. 1995, 7, 607632.Google Scholar
6) Tarasevich, B.; Rieke, P.; Liu, J. Chem. Mater. 1996, 8, 292300.Google Scholar
7) Yang, H.; Coombs, N.; Dag, O.; Sokolov, I.; Ozin, G. J. Mater. Chem. 1997, 7, 17551761.10.1039/a702110kGoogle Scholar
8) Lu, Y.; Ganguli, R.; Drewien, C.; Anderson, M.; Brinker, C.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M.; Zink, J. Nature 1997, 389, 364368.Google Scholar
9) Keller, S.; Kim, H.; Mallouk, T. J. Am. Chem. Soc. 1994, 116, 88178818.10.1021/ja00098a055Google Scholar
10) Ogawa, M. J. Am. Chem. Soc. 1994, 116, 79417942.10.1021/ja00096a079Google Scholar
11) Kleinfeld, E.; Ferguson, G. Science 1994, 265, 370373.10.1126/science.265.5170.370Google Scholar
12) Brinker, C.; Sehgal, R.; Raman, N.; Schunk, P.; Headley, T. J. Sol-Gel Sci. & Tech. 1994, 2, 469476.10.1007/BF00486293Google Scholar
13) Nishida, F.; McKiernan, B.; Dunn, B.; Zink, J.; Brinker, C.; Hurd, A. J. Am. Ceram. Soc. 1995, 78, 16401648.10.1111/j.1151-2916.1995.tb08863.xGoogle Scholar
14) Manne, S.; Cleveland, J.; Gaub, H.; Stucky, G.; Hansma, P. Langmuir 1994, 10, 44094413.Google Scholar
15) Bull, L.; Kumar, D.; Millar, S.; Besier, T.; Janicke, M.; Stucky, G.; Chmelka, B. An insitu X-ray and NMR study of the formation of layered mesophase materials; Bull, L.; Kumar, D.; Millar, S.; Besier, T.; Janicke, M.; Stucky, G.; Chmelka, B., Ed.; Elsevier Science B.V., 1994; Vol. 84, pp 429434.Google Scholar
16) Israelachvili, J. Intermolecular and surface forces; 2nd ed.; Academic Press, Inc.: San Diego, 1992.Google Scholar
17) Odian, G. Principles of polymerization; 2nd Ed ed.; John Wiley and Sons: New York, 1981; Vol. 295.Google Scholar
18) Pretsch, E.; Siebl, J.; Simon, W.; Clerc, T.; Pretsch, E.; Siebl, J.; Simon, W.; Clerc, T., Ed.; Springer-Verlag: Berlin, 1989, pp 11411142.Google Scholar
19) Sellinger, A.; Laine, R. Macromolecules 1996, 29, 23272330.10.1021/ma951499yGoogle Scholar
20) Giannelis, E. Adv. Mater. 1996, 8, 2935.10.1002/adma.19960080104Google Scholar
21) Bein, T.; Enzel, P. Angew. Chemie Intl. Ed. 1989, 28, 16921694.Google Scholar
22) Bein, T. Chem Mater 1996, 8, 16361653.Google Scholar
23) Ozin, G. Adv. Mater. 1992, 4, 612649.Google Scholar
24) MacLachlan, M.; Aroca, P.; Coombs, N.; Manners, I.; Ozin, G. Adv. Mater. 1998, 10, 144149.10.1002/(SICI)1521-4095(199801)10:2<144::AID-ADMA144>3.0.CO;2-M3.0.CO;2-M>Google Scholar