Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-vkhs7 Total loading time: 0.259 Render date: 2023-02-07T02:22:33.816Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Self-Assembly of Organic-Inorganic Nanocomposite Coatings that Mimic the Structure of Shell

Published online by Cambridge University Press:  10 February 2011

Alan Sellinger
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106.
Pilar M. Weiss
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106.
Anh Nguyen
Affiliation:
University of New Mexico, Albuquerque, New Mexico 87185.
Yunfeng Lu
Affiliation:
University of New Mexico, Albuquerque, New Mexico 87185.
Roger A. Assink
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106.
C. Jeffrey Brinker
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87106. University of New Mexico, Albuquerque, New Mexico 87185.
Get access

Abstract

After over a decade of research, the efficient synthesis and processing of layered organic/inorganic nanocomposites that mimic bone and shell structures remains an elusive goal of the materials chemist. We report on a rapid, efficient, continuous method to form layered nanocomposites via evaporation induced supramolecular self-assembly (SSA). During dip coating of a homogeneous sol containing alcohol or ether solvents, silica precursors, organic monomers, initiators and surfactant (at an initial concentration below cmc), solvent evaporation induces the formation of micellar structures that co-organize with silica to form cubic, hexagonal or lamellar mesophases. The organic monomers and initiators are solvated within the hydrophobic micellar interiors. Subsequent photo or thermal polymerization and washing results in a silica/polymer thin film nanocomposite. The microstructural and physical characteristics of these materials will be discussed in the context of potential applications as abrasion resistant coatings and optical hosts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Mann, S. Nature 1993, 365, 499505.Google Scholar
2) Heuer, A.; Fink, D.; Laraia, V.; Arias, J.; Calvert, P.; Kendall, K.; Messing, G.; Blackwell, J.; Rieke, P.; Thompson, D.; Wheeler, A.; Veis, A.; Caplan, A. Science 1992, 255, 10981105.10.1126/science.1546311CrossRefGoogle Scholar
3) Jackson, A.; Vincent, J.; Turner, R. The mechanical design of nacre; 1277 ed.; Jackson, A.; Vincent, J.; Turner, R., Ed.: London, 1988; Vol. 234, pp 415-&.Google Scholar
4) Heywood, B.; Mann, S. Adv. Mater. 1994, 6, 919.CrossRefGoogle Scholar
5) Fendler, J.; Meldrum, F. Adv. Mater. 1995, 7, 607632.Google Scholar
6) Tarasevich, B.; Rieke, P.; Liu, J. Chem. Mater. 1996, 8, 292300.Google Scholar
7) Yang, H.; Coombs, N.; Dag, O.; Sokolov, I.; Ozin, G. J. Mater. Chem. 1997, 7, 17551761.10.1039/a702110kCrossRefGoogle Scholar
8) Lu, Y.; Ganguli, R.; Drewien, C.; Anderson, M.; Brinker, C.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M.; Zink, J. Nature 1997, 389, 364368.CrossRefGoogle Scholar
9) Keller, S.; Kim, H.; Mallouk, T. J. Am. Chem. Soc. 1994, 116, 88178818.10.1021/ja00098a055CrossRefGoogle Scholar
10) Ogawa, M. J. Am. Chem. Soc. 1994, 116, 79417942.10.1021/ja00096a079CrossRefGoogle Scholar
11) Kleinfeld, E.; Ferguson, G. Science 1994, 265, 370373.10.1126/science.265.5170.370CrossRefGoogle Scholar
12) Brinker, C.; Sehgal, R.; Raman, N.; Schunk, P.; Headley, T. J. Sol-Gel Sci. & Tech. 1994, 2, 469476.10.1007/BF00486293CrossRefGoogle Scholar
13) Nishida, F.; McKiernan, B.; Dunn, B.; Zink, J.; Brinker, C.; Hurd, A. J. Am. Ceram. Soc. 1995, 78, 16401648.10.1111/j.1151-2916.1995.tb08863.xCrossRefGoogle Scholar
14) Manne, S.; Cleveland, J.; Gaub, H.; Stucky, G.; Hansma, P. Langmuir 1994, 10, 44094413.CrossRefGoogle Scholar
15) Bull, L.; Kumar, D.; Millar, S.; Besier, T.; Janicke, M.; Stucky, G.; Chmelka, B. An insitu X-ray and NMR study of the formation of layered mesophase materials; Bull, L.; Kumar, D.; Millar, S.; Besier, T.; Janicke, M.; Stucky, G.; Chmelka, B., Ed.; Elsevier Science B.V., 1994; Vol. 84, pp 429434.Google Scholar
16) Israelachvili, J. Intermolecular and surface forces; 2nd ed.; Academic Press, Inc.: San Diego, 1992.Google Scholar
17) Odian, G. Principles of polymerization; 2nd Ed ed.; John Wiley and Sons: New York, 1981; Vol. 295.Google Scholar
18) Pretsch, E.; Siebl, J.; Simon, W.; Clerc, T.; Pretsch, E.; Siebl, J.; Simon, W.; Clerc, T., Ed.; Springer-Verlag: Berlin, 1989, pp 11411142.Google Scholar
19) Sellinger, A.; Laine, R. Macromolecules 1996, 29, 23272330.10.1021/ma951499yCrossRefGoogle Scholar
20) Giannelis, E. Adv. Mater. 1996, 8, 2935.10.1002/adma.19960080104CrossRefGoogle Scholar
21) Bein, T.; Enzel, P. Angew. Chemie Intl. Ed. 1989, 28, 16921694.Google Scholar
22) Bein, T. Chem Mater 1996, 8, 16361653.CrossRefGoogle Scholar
23) Ozin, G. Adv. Mater. 1992, 4, 612649.Google Scholar
24) MacLachlan, M.; Aroca, P.; Coombs, N.; Manners, I.; Ozin, G. Adv. Mater. 1998, 10, 144149.10.1002/(SICI)1521-4095(199801)10:2<144::AID-ADMA144>3.0.CO;2-M3.0.CO;2-M>CrossRef3.0.CO;2-M>Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-Assembly of Organic-Inorganic Nanocomposite Coatings that Mimic the Structure of Shell
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Self-Assembly of Organic-Inorganic Nanocomposite Coatings that Mimic the Structure of Shell
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Self-Assembly of Organic-Inorganic Nanocomposite Coatings that Mimic the Structure of Shell
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *