Skip to main content Accessibility help
×
Home

Self-Assembly of a Water-Soluble Tricyclic Heterocycle into J-Type Rosette Nanotubes

Published online by Cambridge University Press:  01 February 2011


Gabor Borzsonyi
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Rachel L. Beingessner
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Takeshi Yamazaki
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Jae-Young Cho
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Andrew J. Myles
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Andriy Kovalenko
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Hicham Fenniri
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.

Abstract

The synthesis and self-assembly of a water-soluble, tricyclic, self-complementary heterocycle that features the hydrogen bond donor-acceptor arrays of both guanine (G) and cytosine (C) juxtaposed between a pyridine ring is presented. In solution, this tricycle, which has been termed xK1, self-assembles into Rosette Nanotubes (RNTs) that have an inner diameter of 1.4 nm. Unlike the RNTs formed from the bicyclic congener K1, we demonstrate that xK1 with its extended ð system, forms a J-type RNT assembly determined through UV-Vis, CD and fluorescence spectroscopy experiments. This observation brings the possibility of developing electrically conducting RNTs for applications in the areas of photovoltaics and molecular wires.


Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Mascal, M., Hext, N. M., Warmuth, R., Moore, M. H., and Turkenburg, J. P., Angew. Chem., Int. Ed. Engl. 35, 2204 (1996). (b) A. Marsh, M. Silvestri, and J.-M. Lehn, Chem. Commun. 1527 (1996). (c) H. Fenniri, P. Mathivanan, K. L. Vidale, D. M. Sherman, K. Hallenga, K. V. Wood, and J. G. Stowell, J. Am. Chem. Soc. 123, 3854 (2001).CrossRefGoogle Scholar
2. Fenniri, H., Deng, B.-L., and Ribbe, A. E., J. Am. Chem. Soc. 124, 11064 (2002). (b) H. Fenniri, B.-L. Deng, A. E. Ribbe, K. Hallenga, J. Jacob, and P. Thiyagarajan, Proc. Natl. Acad. Sci. USA. 99, 6487 (2002). (c) J. G. Moralez, J. Raez, T. Yamazaki, R. K. Motkuri, A. Kovalenko, and H. Fenniri, J. Am. Chem. Soc. 127, 8307 (2005). (d) R. S. Johnson, T. Yamazaki, A. Kovalenko, and H. Fenniri, J. Am. Chem. Soc. 129, 5735 (2007). (e) R. L. Beingessner, B.-L. Deng, P. E. Fanwick, and H. Fenniri, J. Org. Chem. 73, 931 (2008). (f) G. Tikhomirov, M. Oderinde, D. Makeiff, A. Mansouri, W. Lu, F. R. Heirtzler, D. Y. Kwok, and H. Fenniri, J. Org. Chem. 73, 4248 (2008).CrossRefGoogle Scholar
3. Borzsonyi, G., Johnson, R. S., Myles, A. J., Cho, J.-Y., Yamazaki, T., Beingessner, R. L., Kovalenko, A., and Fenniri, H., Chem. Commun. 46, 6527 (2010).CrossRefGoogle Scholar
4. Borzsonyi, G., Beingessner, R. L., Yamazaki, T., Cho, J.-Y., Myles, A. J., Malac, M., Egerton, R., Kawasaki, M., Ishizuka, K., Kovalenko, A., and Fenniri, H., J. Am. Chem. Soc. 132, 15136 (2010).CrossRefGoogle Scholar
5. Lin, H., Camacho, R., Tian, Y., Kaiser, T. E., Würthner, F., and Scheblykin, I. G., Nano Lett. 10, 620 (2010). (b) W. Jin, Y. Yamamoto, T. Fukushima, N. Ishii, J. Kim, K. Kato, M. Takata, T. Aida, J. Am. Chem. Soc. 130, 9434 (2008). (c) K.-Y. Law, Chem. Rev. 93, 449 (1993).CrossRefGoogle Scholar
6. Tischler, J. R., Bradley, M. S., Zhang, Q., Atay, T., Nurmikko, A., and Bulovic, V., Org. Electron. 8, 94 (2007). (b) B. J. Walker, G. P. Nair, L. F. Marshall, V. Bulovic, and M. G. Bawendi, J. Am. Chem. Soc. 131, 9624 (2009).CrossRefGoogle Scholar
7. James, T. H., Ed. “The Theory of the Photographic Process” (Macmillan, 1977).Google Scholar
8. Sayama, K., Tsukagoshi, S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., and Arakawa, H., Sol Energy Mater. Sol. Cells 80, 47 (2003). (b) M. Kawasaki, and S. Aoyama, Chem. Commun. 988 (2004). (c) A. R. Tameev, A. Vannikov, and H. F. M. Schoo, Thin Solid Films 451/452, 109 (2004). (d) X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki, and S. Sasaki, J. Phys. Chem. C 113, 7954 (2009).CrossRefGoogle Scholar
9. Beck, G., Ger. Offen. 3643456 (1988).Google Scholar
10. Kovalenko, A., “Three-Dimensional RISM Theory for Molecular Liquids and Solid-Liquid Interfaces," Molecular Theory of Solvation, ed. Hirata, F. (Kluwer Academic Publishers, 2003) pp. 169276. (b) A. Kovalenko, and F. Hirata, J. Chem. Phys. 112, 10391–10402 and 10403-10417 (2000).Google Scholar
11. Kim, O.-K., Je, J., Jernigan, G., Buckley, L., and Whitten, D., J. Am. Chem. Soc. 128, 510 (2006). (b) C. Nuckolls, T. J. Katz, L. Castellanos, J. Am. Chem. Soc. 118, 3767 (1996). (c) H. von Berlepsch, S. Kirstein, and C. Böttcher, J. Phys. Chem. B. 107, 9646 (2003).CrossRefGoogle Scholar
12. Berova, N., Di Bari, L., and Pesreflli, G., Chem. Soc. Rev. 36, 914 (2007).CrossRefGoogle Scholar
13. Chan, J. M. W., Tischler, J. R., Kooi, S. E., Bulovic, V., and Swager, T. M., J. Am. Chem. Soc. 131, 5659 (2009).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-pwkpp Total loading time: 0.282 Render date: 2020-12-05T22:33:09.882Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 22:01:11 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-Assembly of a Water-Soluble Tricyclic Heterocycle into J-Type Rosette Nanotubes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-Assembly of a Water-Soluble Tricyclic Heterocycle into J-Type Rosette Nanotubes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-Assembly of a Water-Soluble Tricyclic Heterocycle into J-Type Rosette Nanotubes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *