Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-jhk7w Total loading time: 0.313 Render date: 2021-04-22T12:12:49.513Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Self-assembled Multi-walled Carbon Nanotube Coatings

Published online by Cambridge University Press:  01 February 2011

Kristopher Behler
Affiliation:
kbehler@drexel.edu, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States, 215-895-0355, 215-895-1934
Mickael Havel
Affiliation:
mickaelhavel@hotmail.com, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Davide Mattia
Affiliation:
dm3332@drexel.edu, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Yury Gogotsi
Affiliation:
yg36@drexel.edu, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Get access

Abstract

Multi-walled carbon nanotube (MWCNT) grafting onto electrospun poly(acrylonitrile) (PAN) nanofibers yields a layer by layer deposition of self assembled (LBL-SA) nanotube filaments or nanowires. PAN fibers were first functionalized with carboxylic groups through a sodium hydroxide treatment. Then, poly(diallyldimethylammonium chloride) (PDDAC), a positively charged polyelectrolyte was adsorbed onto the fibers via electrostatic interaction. When placed in contact with the modified fibers, acid treated MWCNT (ac-MWCNT) self-assemble, producing a dense and continuous layer onto the polymer nanofibers, while the inherent structure and morphology of the polymer nanofibers are retained. This method is being investigated as a universal approach applicable to a variety of materials. By producing layers of nanotubes, the electrical conductivity of polymers may be improved due to formation of a continuous MWCNT monolayer on the surface as opposed to traditional incorporation of large amounts of nanotubes into the bulk of the polymer. This method can further be implemented on polymer systems that promote a positively charged surface for COOH functionalized MWCNT to attach. Polyamides offer a perfect scenario in which they do not need to be modified to allow hydrogen bonding between the polymer and the ac-MWCNTs. Electrospun polyamide 11 (PA 11) provides a network of 100 nm and greater, fibers for deposition of ac-MWCNTs. These MWCNT coated nanofibers possess high electrical conductivity, about 0.1 S/cm, resulting from a dense coverage of MWCNTs on the polymer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Baskaran, D., Mays, J. W. and Bratcher, M. S., Chem. Mater. 17 (13), 33893397 (2005).CrossRefGoogle Scholar
2. Du, F. M., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E. and Winey, K. I., Macromolecules 37 (24), 90489055 (2004).CrossRefGoogle Scholar
3. Grossiord, N., Loos, J., Regev, O. and Koning, C. E., Chem. Mater. 18 (5), 10891099 (2006).CrossRefGoogle Scholar
4. Park, C., Ounaies, Z., Watson, K. A., Crooks, R. E., Smith, J., Lowther, S. E., Connell, J. W., Siochi, E. J., J. S. Harrison and T. Clair, L. S., Chem. Phys. Lett. 364 (3-4), 303308 (2002).CrossRefGoogle Scholar
5. Philip, B., Xie, J. N., Chandrasekhar, A., Abraham, J. and Varadan, V. K., Smart Mater. Struct. 13 (2), 295298 (2004).CrossRefGoogle Scholar
6. Skakalova, V., Dettlaff-Weglikowska, U. and Roth, S., Synthetic Metals 152 (1-3), 349352 (2005).CrossRefGoogle Scholar
7. Wang, L. and Dang, Z. M., Appl. Phys. Lett. 87 (4), 042903 (2005).CrossRefGoogle Scholar
8. Wang, M., Pramoda, K. P. and Goh, S. H., Polymer 46 (25), 1151011516 (2005).CrossRefGoogle Scholar
9. Xu, Y. S., Ray, G. and Abdel-Magid, B., Composites Part A 37 (1), 114121 (2006).CrossRefGoogle Scholar
10. Yang, J. W., Hu, J. H., Wang, C. C., Qin, Y. J. and Guo, Z. X., Macromol. Mater. Eng. 289 (9), 828832 (2004).CrossRefGoogle Scholar
11. Ye, H. H., Lam, H., Titchenal, N., Gogotsi, Y. and Ko, F., Appl. Phys. Lett. 85 (10), 17751777 (2004).CrossRefGoogle Scholar
12. Zeng, H. L., Gao, C., Wang, Y. P., Watts, P. C. P., Kong, H., Cui, X. W. and Yan, D. Y., Polymer 47 (1), 113122 (2006).CrossRefGoogle Scholar
13. Ayutsede, J., Gandhi, M., Sukigara, S., Ye, H. H., Hsu, C. M., Gogotsi, Y. and Ko, F., Biomacromolecules 7 (1), 208214 (2006).CrossRefGoogle Scholar
14. Matarredona, O., Rhoads, H., Li, Z. R., Harwell, J. H., Balzano, L. and Resasco, D. E., J. Phys. Chem. B 107 (48), 1335713367 (2003).CrossRefGoogle Scholar
15. Yurekli, K., Mitchell, C. A. and Krishnamoorti, R., J. Am. Chem. Soc. 126 (32), 99029903(2004).CrossRefGoogle Scholar
16. Zhang, M. N., Su, L. and Mao, L. Q., Carbon 44 (2), 276283 (2006).CrossRefGoogle ScholarPubMed
17. Li, Y. H., Wang, S. G., Luan, Z. K., Ding, J., Xu, C. L. and Wu, D. H., Carbon 41 (5), 10571062 (2003).CrossRefGoogle Scholar
18. Luong, J. H. T., Hrapovic, S., Liu, Y. L., Yang, D. Q., Sacher, E., Wang, D. S., Kingston, C. T. and Enright, G. D., J. Phys. Chem. B 109 (4), 14001407 (2005).CrossRefGoogle Scholar
19. Rosca, I. D., Watari, F., Uo, M. and Akaska, T., Carbon 43 (15), 31243131 (2005).CrossRefGoogle Scholar
20. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H. H., Yang, G. L., Li, C. and Willis, P., Adv. Mater. 15 (14), 11611165 (2003).CrossRefGoogle Scholar
21. Kim, H. S., Jin, H.-J., Myung, S. J., Kang, M. S. and Chin, I.-J., Macromolec. Rapid Comm. 27 (2), 146151 (2006).CrossRefGoogle Scholar
22. Kim, B. and Sigmund, W. M., Colloids Surf., A 266 (1-3), 9196 (2005).CrossRefGoogle Scholar
23. Behler, K., Osswald, S., Ye, H., Dimovski, S. and Gogotsi, Y., J. Nanopart. Res. 8 (5), 615625 (2006).CrossRefGoogle Scholar
24. Osswald, S., Havel, M. and Gogotsi, Y., J. Raman Spectrosc. 38 (6), 728736 (2007).CrossRefGoogle Scholar
25. Drew, C., Wang, X. G., Samuelson, L. A. and Kumari, J., in Polymeric Nanofibers, edited by Renekar, D. H., and Fong, H., (ACS Symposium Series 918, 10, 2006) pp. 137148.CrossRefGoogle Scholar
26. Behler, K., Havel, M. and Gogotsi, Y., Polymer 48 (22), 66176621 (2007).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-assembled Multi-walled Carbon Nanotube Coatings
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-assembled Multi-walled Carbon Nanotube Coatings
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-assembled Multi-walled Carbon Nanotube Coatings
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *