Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T21:22:01.822Z Has data issue: false hasContentIssue false

Schottky Contact Characterization of Thin, Excimer Laser Grown Gaas Oxides

Published online by Cambridge University Press:  26 February 2011

M.T. Schmidt
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY, 10027
C.F. Yu
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY, 10027
D.V. Podlesnik
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY, 10027
E.S. Yang
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY, 10027
R.M. Osgood Jr.
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY, 10027
Get access

Abstract

Thin GaAs-oxide layers have been formed on GaAs (100) surfaces using deep UV light to enhance the oxidation reactions. Two different oxidation reactions were compared by using UV light of wavelengths below and above the O2 dissociation limit, viz, 248 nm and 193 nm respectively. For the light above the O2 dissociation limit which causes ozone formation, oxides formed by direct surface illumination were compared to oxides formed by illumination parallel to the GaAs surface. Metal contacts were deposited in situ to study the effect of the various thin oxides on the Schottky barrier height of contacts to GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Woodall, J.M. and Freeouf, J.L., J. Vac. Sci. Technol. 19, 794 (1981).Google Scholar
2 Waldrop, J.R., Appl. Phys. Lett. 47, 1301 (1985).Google Scholar
3 Schmidt, M.T., Podlesnik, D.V., Evans, H.L., Yu, C.F., Yang, E.S., and Osgood, R.M. Jr., J. Vac. Sci. Technol. A 6, in press.Google Scholar
4 Childs, R. B., Ruths, J. M., Sullivan, T. E., and Fonash, S. J., J. Vac. Sci. Technol. 15, 1397 (1978).Google Scholar
5 Van Meirhaeghe, R. L., Laflere, W. H., and Cardon, F., Solid-State Electron. 25, 1089 (1982).Google Scholar
6 Yu, C.F., Schmidt, M.T., Podlesnik, D.V., and Osgood, R.M. Jr., J. Vac. Sci. Technol. B5, 1087 (1987).Google Scholar
7 Chang, R. P. H., Coleman, J. J., Polak, A. J., Feldman, L. C., and Chang, C. C., Appl. Phys. Lett. 34, 237 (1979).Google Scholar
8 Schafer, S.A. and Lyon, S.A., J. Vac. Sci. Technol. 19, 494 (1981).Google Scholar
9 Petro, W.G., Hino, I., Eglash, S., Lindau, I., Su, C.Y., and Spicer, W.E., J. Vac. Sci. Technol. 21, 405 (1982).Google Scholar
10 Bartels, F. and Monch, W., Surf. Sci. 143, 315, (1984).Google Scholar
11 Yu, C.F., Schmidt, M.T., Podlesnik, D.V., and Osgood, R.M. Jr, J. Vac. Sci. Technol. B 5, 1087 (1987).Google Scholar
12 Ingrey, S., Lau, W.M., and McIntyre, N.S., J. Vac. Sci. Technol. A4, 984 (1986).Google Scholar
13 Ready, J.F., Effects of High Power Laser Irradiation (Academic Press, New York, 1971).Google Scholar
14 Yu, C.F., Podlesnik, D.V., Schmidt, M.T., Gilgen, H.H., and Osgood, R.M. Jr., Chem. Phys. Lett. 130, 301 (1986).Google Scholar
15 Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar