Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T19:00:17.734Z Has data issue: false hasContentIssue false

Scattering Rings in Birefringent Porous Silicon

Published online by Cambridge University Press:  01 February 2011

Claudio J. Oton
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Zeno Gaburro
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Mher Ghulinyan
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Nicola Daldosso
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Lucio Pancheri
Affiliation:
Department of Information and Telecommunication Technology, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Paolo Bettotti
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Luca Dal Negro
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Lorenzo Pavesi
Affiliation:
INFM and Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy
Get access

Abstract

We report the observation of strongly anisotropic scattering of laser light at oblique incidence on (100)-oriented porous silicon layers. We performed angle-resolved light scattering measurements and three concentric rings were observed. Modeling porous silicon by means of nanometric columnar air pores and an effective anisotropic uniaxial dielectric constant explains the observed phenomenon, and besides, the observation of the angle aperture of these rings allows a direct measurement of relative birefringence. We finally study the changes of optical anisotropy after different modifications of the structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57 (10), 1046 (1990).Google Scholar
2. Cullis, A. G., Canham, L. T. and Calcott, P. D. J., J. Appl. Phys. 82 (3) 909 (1997).Google Scholar
3. Berger, M. G., Arens-Fischer, R., Kruger, M., Billat, S., Luth, H., Hilbrich, S., Theiβ, W. and Grosse, P., Thin Solid Films 297, 137 (1997).Google Scholar
4. Pavesi, L., Riv. Nuovo Cimento 20, (10) 1 (1997).Google Scholar
5. Ferrand, P., Romestain, R., and Vial, J. C., Phys. Rev. B 63, 115106 (2001).Google Scholar
6. Ferrieu, F., Halimaoui, A. and Bensahel, D., Solid State Commun. 84 (3) 293 (1992).Google Scholar
7. Mihalcescu, I., Lerondel, G. and Romestain, R., Thin Solid Films 297, 245 (1997).Google Scholar
8. Oton, C. J., Gaburro, Z., Ghulinyan, M., Pancheri, L., Bettotti, P., Negro, L. Dal, and Pavesi, L., Appl. Phys. Lett. 81 (26) 4919 (2002).Google Scholar
9. Genereux, F., Leonard, S. W., Driel, H. M. Van, Birner, A. and Gösele, U., Phys. Rev. B 63, 161101 (2001).Google Scholar
10. Sagnes, I., Halimaoui, A., Vincent, G., and Badoz, P. A., Appl. Phys. Lett. 62, 1155 (1993).Google Scholar