Skip to main content Accessibility help
×
Home

Review of Environmental Effects in Intermetallics

Published online by Cambridge University Press:  22 February 2011


E. P. George
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6093
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6093

Abstract

The recent progress made in our understanding of the phenomenology and mechanisms of environmental embrittlement in ordered intermetallics is reviewed by considering two model alloy systems of the L12 and B2 crystal classes (Ni3Al and FeAl). The poor ductility commonly encountered when these alloys are tensile tested in ambient air is due mainly to environmental embrittlement, in the absence of which, both alloys are now known to be quite ductile. Both H2O and H2, at levels found in ordinary ambient air, are found to cause environmental embrittlement, with the former usually more deleterious. In the case of H2O, the micromechanism involves reaction with the intermetallic to form an oxide (or hydroxide) and simultaneous generation of atomic hydrogen which then enters the metal and causes embrittlement. In the case of H2, on the other hand, atomic hydrogen is generated as a result of the dissociation of physisorbed hydrogen molecules on the intermetallic surfaces. Consistent with the proposed embrittlement mechanism, ductility is found to increase with decreasing amounts of H2O (or H2) in the test environment, increasing strain rate, and decreasing (or increasing) temperature. Environmental embrittlement in Ni3Al (and other L12 alloys) occurs predominantly intergranularly, whereas in FeAl (and other B2 alloys) it can also occur transgranularly—presumably because diffusion of hydrogen is fast enough through the bulk in the more open B2 structure but only so along grain boundaries in the L12 structure. Microalloying with B, which segregates strongly to the grain boundaries, can overcome environmental embrittlement in L12 alloys, but not in B2 alloys; in the latter, alloying additions probably have to be added at significantly higher (macroalloy) levels to affect the bulk properties. In neither alloy is environmental embrittlement the sole source of brittleness: depending on the alloy stoichiometry, and grain boundary character, a given grain boundary may be intrinsically weaker (or stronger) than the bulk, thereby influencing overall ductility.


Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Liu, C. T., Lee, E. H., and McKamey, C. G., Scripta. Metall. 23, 875 (1989).CrossRefGoogle Scholar
2. Liu, C. T., in Ordered Intermetallics—Physical Metallurgy and Mechanical Behavior, edited by Liu, C. T., Cahn, R. W., and Sauthoff, G. (Kluwer Academic Publ., Netherlands, 1992) p. 321.CrossRefGoogle Scholar
3. Stoloff, N. S. and Liu, C. T., Intermetallics, 2, 75 (1994).CrossRefGoogle Scholar
4. Flinn, P. A., Trans. AIME, 218, 145 (1960).Google Scholar
5. Davies, R. G. and Stoloff, N. S., Trans. AIME, 233, 714 (1965).Google Scholar
6. Copley, S. M. and Kear, B. H., Trans. TMS-AIME, 239, 977 (1967).Google Scholar
7. Aoki, K. and Izumi, O., Trans. Jpn. Inst. Met. 19, 203 (1978).CrossRefGoogle Scholar
8. Heredia, F. E. and Pope, D. P., Acta Metall. 39, 2017 (1991).CrossRefGoogle Scholar
9. Davies, R. G. and Stoloff, N. S., Trans. TMS-AIME, 233, 714 (1965).Google Scholar
10. Thornton, P. H., Davies, R. G., and Johnston, T. L., Metall. Trans. 1, 207 (1970).Google Scholar
11. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi, 41, 170 (1977).Google Scholar
12. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
13. Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scripta Metall. 19, 551 (1985).CrossRefGoogle Scholar
14. Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. 16A, 441 (1985).CrossRefGoogle Scholar
15. Takasugi, T. and Izumi, O., Acta Metall. 33, 1247 (1985).CrossRefGoogle Scholar
16. Taub, A. I. and Briant, C. L., Acta Metall. 35, 1597 (1987).CrossRefGoogle Scholar
17. King, A. H. and Yoo, M. H., in MRS Symp. Proc. Vol. 81 (1987) p. 99.CrossRefGoogle Scholar
18. Kruisman, J. J., Vitek, V., De Hosson, J. T. M., Acta Metall. 36, 2729 (1988).CrossRefGoogle Scholar
19. Liu, C. T. and George, E. P., Scripta Metall. 24, 1285 (1990).CrossRefGoogle Scholar
20. Liu, C. T., McKamey, C. G., and Lee, E. H., Scripta. Metall. 24, 385 (1990).CrossRefGoogle Scholar
21. Takasugi, T., Masahashi, N., and Izumi, O., Scripta Metall. 20, 1317 (1986).CrossRefGoogle Scholar
22. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. 19A, 353 (1988).CrossRefGoogle Scholar
23. Liu, C. T., Scripta Metall. Mater. 27, 25 (1992).CrossRefGoogle Scholar
24. George, E. P., Liu, C. T., and Pope, D. P., Scripta Metall. Mater. 27, 365 (1992).CrossRefGoogle Scholar
25. George, E. P., Liu, C. T., and Pope, D. P., Scripta Metall. Mater. 28, 857 (1993).CrossRefGoogle Scholar
26. George, E. P., Liu, C. T., and Pope, D. P., Scripta Metall. Mater. 30, 37 (1994).CrossRefGoogle Scholar
27. Cohron, J. and George, E. P., unpublished research, Oak Ridge National Laboratory (1994).Google Scholar
28. Handbook of Chemistry and Physics, 54th edition, CRC Press, Cleveland, OH (1973).Google Scholar
29. Chiba, A., Hanada, S., Watanabe, S., Abe, T., and Obana, T., Acta Metall. Mater. 42, 1733 (1994).CrossRefGoogle Scholar
30. Hanada, S., Watanabe, S., and Izumi, O., J. Mater. Sci. 21, 203 (1986).CrossRefGoogle Scholar
31. Lin, H. and Pope, D. P., Acta Metall. 41, 553 (1993).CrossRefGoogle Scholar
32. Nishimura, C., Hirano, T., and Amano, M., Scripta Metall. Mater. 29 (1993).CrossRefGoogle Scholar
33. George, E. P., unpublished research, Oak Ridge National Laboratory (1994).Google Scholar
34. Liu, C. T., Fu, C. L., George, E. P., and Painter, G. S., ISIJ Intl. 31, 1192 (1991).CrossRefGoogle Scholar
35. Li, J. C. M. and Liu, C. T., submitted to Acta Metall. Mater. (1994).Google Scholar
36. Taub, A. I., Chang, K. -M., and Liu, C. T., Scripta Metall. 20, 1613 (1986).CrossRefGoogle Scholar
37. Liu, C. T. and Sikka, V. K., J. Met. 38, 19 (1986).Google Scholar
38. White, C. L. and Stein, D. F., Metall. Trans. 9A, 113 (1978).Google Scholar
39. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
40. Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. 15A, 399 (1984).CrossRefGoogle Scholar
41. Hirano, T., Acta Metall. 38, 2667 (1990).CrossRefGoogle Scholar
42. Hirano, T., Scripta Metall. 25, 1747 (1991).CrossRefGoogle Scholar
43. Hirano, T., Chung, S. S., Mishima, Y., and Suzuki, T., in MRS Symp. Proc. Vol. 213 (1991) p. 635.CrossRefGoogle Scholar
44. Horton, J. A. and Miller, M. K., Acta Metall. 35, 133 (1987).CrossRefGoogle Scholar
45. Schulson, E. M., Wiehs, T. P., Viens, D. V., and Baker, I., Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
46. Liu, C. T., Scripta Metall. Mater. 25, 1231 (1991).CrossRefGoogle Scholar
47. Vitek, V. and Chen, S. P., Scripta Metall. Mater. 25, 1237 (1991).CrossRefGoogle Scholar
48. Takasugi, T. and Izumi, O., Scripta Metall. Mater. 25, 1243 (1991).CrossRefGoogle Scholar
49. King, A. H., Frost, H. J., and Yoo, M. H., Scripta Metall. Mater. 25, 1249 (1991).CrossRefGoogle Scholar
50. Schulson, E. M. and Baker, I., Scripta Metall. Mater. 25, 1253 (1991).CrossRefGoogle Scholar
51. George, E. P., White, C. L., and Horton, J. A., Scripta Metall. Mater. 25, 1259 (1991).CrossRefGoogle Scholar
52. Lee, T. C., Subramanian, R., Robertson, I. M., and Birnbaum, H. K., Scripta Metall. Mater. 25, 1265 (1991).CrossRefGoogle Scholar
53. Brenner, S. S. and Hua, M. -G., Scripta Metall. Mater. 25, 1271 (1991).CrossRefGoogle Scholar
54. Kung, H., Rasmussen, D. R., and Sass, S. L., Scripta Metall. Mater. 25, 1277 (1991).CrossRefGoogle Scholar
55. Mills, M. J., Goods, S. H., Foiles, S. M., and Whetstone, J. R., Scripta Metall. Mater. 25, 1283 (1991).CrossRefGoogle Scholar
56. Liu, C. T., unpublished research, Oak Ridge National Laboratory (1994).Google Scholar
57. Wan, X. J., Zhu, J. H., Jing, K. L., and Liu, C. T., Scripta Metall. Mater. 31, 677 (1994).CrossRefGoogle Scholar
58. Kuruvilla, A. K. and Stoloff, N. S., Scripta Metall. 19, 83 (1985).CrossRefGoogle Scholar
59. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J., Scripta Metall. 23, 217 (1989).CrossRefGoogle Scholar
60. Mackenzie, R. A. D., Vaudin, M. D., and Sass, S. L., in MRS Symp. Proc. Vol. 122 (1988) p. 461.CrossRefGoogle Scholar
61. Farkas, Diana, Jang, H., Lewus, M. O., Versaci, R., and Savino, E. J., in MRS Symp. Proc. Vol. 122 (1988) p. 455.CrossRefGoogle Scholar
62. Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).CrossRefGoogle Scholar
63. Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. 36, 1823 (1988).CrossRefGoogle Scholar
64. Chiba, A., Hanada, S., and Watanabe, S., Acta Metall. 39, 1799 (1991).CrossRefGoogle Scholar
65. Chiba, A., Hanada, S., and Watanabe, S., Scripta Metall. 25, 1053 (1991).CrossRefGoogle Scholar
66. Chiba, A., Hanada, S., and Watanabe, S., Scripta Metall. 25, 303 (1991).CrossRefGoogle Scholar
67. Chiba, A., Hanada, S., and Watanabe, S., Mater. Sci. Engg. A152, 108 (1992).CrossRefGoogle Scholar
68. Aoki, K., Mater. Trans. JIM 31, 443 (1990).CrossRefGoogle Scholar
69. George, E. P., Liu, C. T., and Pope, D. P., in Structural Intermetallics (eds. Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V.) TMS, Warrendale, PA (1993) p. 431.Google Scholar
70. Dimiduk, D. M., Weddington, V. L., and Lipsitt, H. A., in MRS Symp, Proc. Vol. 81 (1987) p. 221.CrossRefGoogle Scholar
71. Liu, C. T. and George, E. P., in MRS Symp. Proc. Vol. 213 (1991) p. 527.CrossRefGoogle Scholar
72. Gaydosh, D. J., Draper, S. L., and Nathal, M. V., Metall Trans. 20A, 1701 (1989).CrossRefGoogle Scholar
73. Crimp, M. A. and Vedula, K. M., Mater. Sci. Eng. 78, 193 (1986).CrossRefGoogle Scholar
74. Baker, I. and Gaydosh, D. J., Mater. Sci. Eng. 96, 147 (1987).CrossRefGoogle Scholar
75. Kerr, W. R., Metall. Trans. 17A, 2298 (1986).CrossRefGoogle Scholar
76. Morgund, P., Moururat, P., and Sainfort, G., Acta Metall. 16, 867 (1968).CrossRefGoogle Scholar
77. Causey, A. and Teghtsoonian, E., Metall. Trans. 1, 1177 (1970).CrossRefGoogle Scholar
78. Crimp, M. A., Vedula, K. M., and Gaydosh, D. J., in MRS Symp. Proc. Vol. 81 (1987) p. 499.CrossRefGoogle Scholar
79. Lin, Y. and George, E. P., unpublished research, Oak Ridge National Laboratory (1994).Google Scholar
80. Liao, J. J. and George, E. P., unpublished research, Oak Ridge National Laboratory (1994).Google Scholar
81. Baker, I., Klein, O., Nelson, C., and George, E. P., Scripta Metall. Mater. 30, 863 (1994).CrossRefGoogle Scholar
82. Schneibel, J. H., Jenkins, M. G., and Maziasz, P. J., in MRS Proc. Symp. Vol. 288 (1993) p. 549.CrossRefGoogle Scholar
83. Schneibel, J. H. and Jenkins, M. G., Scripta Metall. Mater. 28, 389 (1993).CrossRefGoogle Scholar
84. Schneibel, J. H., George, E. P., Specht, E., and Horton, J. A., in these proceedings.Google Scholar
85. George, E. P., Liu, C. T., Lin, H. and Pope, D. P., Mater. Sci. Eng. (1995), in press.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-v9kvb Total loading time: 0.465 Render date: 2020-12-04T23:27:23.989Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 23:00:11 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Review of Environmental Effects in Intermetallics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Review of Environmental Effects in Intermetallics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Review of Environmental Effects in Intermetallics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *