Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bcmtx Total loading time: 0.591 Render date: 2021-04-19T10:18:13.176Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Recent Progress in Electrochemical Deposition without Supporting Electrolyte

Published online by Cambridge University Press:  03 September 2012

V. Fleury
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
M. Rosso
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
J.-N. Chazalviel
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
Get access

Abstract

Electrochemical deposition (ECD) of metals is a very old subject[l], which has considerable applications in the context of electroshaping or electroplating. Electrochemists and chemical engineers have long known the different growth conditions of these metal aggregates and the different parameters which drive morphological changes, at least empirically [2-4]. However, in the recent years, after the introduction of the concept of fractal aggregation[5,6], in the field of non-linear pattern formation[7,8], a lot of work has been devoted to the specific problem of growth of electrodeposits from binary electrolytes [9-51] (i.e. without supporting electrolyte). These studies aimed at understanding the morphology, on the large scale (∼1cm) of the deposits and, more specifically, the transitions between morphologies. It is the aim of this paper to review the progress which has been achieved in the past five years on this question.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Sheldon, S. and Downing, G. M., Phys. Rev. 1 (1) 51 (1893). This reference shows that morphological aspects were addressed in very early work on electrochemical deposition.Google Scholar
2 Bockris, J. O.'M. and Reddy, K. N., Modern Electrochemiitry Plenum/Rosetta New York(1977).CrossRefGoogle Scholar
3 Dini, Jack W., Electrodeposition, Noyes Publications (New Jersey, USA) (1992 ).Google Scholar
4 Ramasany, P., in Handbook of crystal growth 1a, Hurle, C. J. editor, North Holland, (1993).Google Scholar
5NATO ASI Series 100 (1986): On Growth and Form, and 157 (1989): Random Fluctuations and Pattern Growth, Edited by Gene Stanley and Nicole Ostrowsky. Martinus Nijhoff Publishers, Kluwer Academic Publishers Group (Boston).Google Scholar
6 Vicsek, Tamas, Fractal Growth Phenomena, World Scientific (Singapore), Second Edition (1992) and references therein.CrossRefGoogle Scholar
7 Ben-Jacob, Eshel and Garik, Peter, Nature 343, 523 (1990).CrossRefGoogle Scholar
8 Pelcé, p., Dynamics of curved fronts, Academic Press (London, 1991), and references therein.Google Scholar
9 Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).CrossRefGoogle Scholar
10 Sawada, Y., Dougherty, A., and Gollub, J. P., Phys. Rev. Lett. 56, 1260 (1986).CrossRefGoogle Scholar
11 Grier, D., Ben-Jacob, E., Clarke, R. and Sander, L. M., Phys. Rev. Lett. 56, 2315 (1986).CrossRefGoogle Scholar
12 Grier, D. G., Ben-Jacob, E., Clarke, R. and Sander, L. M., Phys. Rev. Lett. 56, 1264 (1986) and David G. Grier and Daniel Mueth, Phys. Rev. E 48, 3841 (1993).CrossRefGoogle Scholar
13 Argoul, F., Arneodo, A., Grasseau, G. and Swinney, H. L., Phys. Rev. Lett. 61, 2558 (1988).CrossRefGoogle Scholar
14 Hibbert, D. B. and Melrose, J. R., Phys. Rev. A 38, 10361048, (1988).CrossRefGoogle Scholar
15 Melrose, J. R. and Hibbert, D. B., Proc. R. Soc. Lond. A 423, 149, (1989).Google Scholar
16 Chazalviel, J.-N., Phys. Rev. A 42, 7355 (1990).CrossRefGoogle Scholar
17 Fleury, V., Chazalviel, J.-N., Rosso, M. and Sapoval, B., J. Electroanal. Chem. 290, 249 (1990).CrossRefGoogle Scholar
18 Fleury, V., Chazalviel, J.-N., Rosso, M., and Sapoval, B., Ann. Chim. Fr. 16, 143 (1991).Google Scholar
19 Fleury, V., Rosso, M., Chazalviel, J.-N., and Sapoval, B., Phys. Rev. A 44, 6693 (1991).CrossRefGoogle Scholar
20 Fleury, V., Rosso, M. and Chazalviel, J.-N., Phys. Rev. A 43, 6908 (1991).CrossRefGoogle Scholar
21 Kahanda, G.L.M.K.S. and Tomkiewicz, M., J. Electrochem. Soc. 136, (1989).CrossRefGoogle Scholar
22 Lam, L., Pochy, R. D. and Castillo, V. M., in Non-linear Structures in Physical Systems, eds. Lam, L. and Morris, H. C. (Springer, New york, 1990).CrossRefGoogle Scholar
23 Pochy, R. D., Garcia, A., Freimuth, R. D., Castillo, V. M. and Lam, L., Physica D 51 539, (1991).CrossRefGoogle Scholar
24 Matsushita, M., Experimental Observation of Aggregations, The Fractal Approach to Heterogeneous Chemistry, Edited by Avnir, D., John Wiley & Sons Ltd, 1989.Google Scholar
25 Melrose, J. R., Hibbert, D.B. and Ball, R. C., Phys. Rev. Lett. 65, 3009 (1990).CrossRefGoogle Scholar
26 Trigueros, P. P, Claret, J., Mas, F. M. and Sagués, F., J. Electroanal. Chem. 328, 165 (1992) and J. Electroanal Chem. 312, 219 (1991).CrossRefGoogle Scholar
27 Fleury, V., Rosso, M. and Chazalviel, J.-N., Phys. Rev. Lett. 68, 2492, (1992).CrossRefGoogle Scholar
28 Fleury, V., Rosso, M. and Chazalviel, J.-N., Phys. Rev. E. 48, 1279 (1993).CrossRefGoogle Scholar
29 Rosso, M., Chazalviel, J.-N., Fleury, V., and Chassaing, E., Electrochimica Acta 39, 507515 (1994).CrossRefGoogle Scholar
30 Cork, R.H., Pritchard, D.C. and Tam, W.Y., Phys. Rev. A 44, 6940 (1991).CrossRefGoogle Scholar
31 Fleury, V., Kaufman, J. H. and Hibbert, D. B., Phys. Rev E 48, 3831, (1993).CrossRefGoogle Scholar
32 Fleury, V., Kaufman, J. H. and Hibbert, D. B., Nature 367, 435 (1994).CrossRefGoogle Scholar
33 Barkey, D., Garik, P., E. Ben-Jacob, Miller, B. and Orr, B., J. Electrochem Soc. 139, (1992).Google Scholar
34 Barkey, D., J. Electrochem. Soc. 138, 2912 (1991).CrossRefGoogle Scholar
35 Barkey, D., Watt, D., Liu, Z. and Raber, S., J. Electrochem. Soc. 141, 1206 (1994).CrossRefGoogle Scholar
36 Wang, Mu, Enckevort, Willem J.P. van, Ming, Nai-ben and Bennema, Piet, Nature, 367 438441 (1994).CrossRefGoogle Scholar
37 Okubo, S., Mogi, I. and Nakagawa, Y., Sci. Rep. Ritu, A 38 383390 (1993) and I. Mogi, S.Okubo and Y.Nakagawa, Journal of Crystal Growth 128 258-26 1 North Holland Elsevier (1993).Google Scholar
38 Garikc, p., Hetrick, J., Orr, B., Barkey, D. and Ben-Jacob, E., Phys. Rev. Lett. 66, 1606 (1991).CrossRefGoogle Scholar
39 Kuhn, A. and Argoul, F., Phys. Rev. E 49, 4298 (1994).CrossRefGoogle Scholar
40 Kuhn, A. and Argoul, F., Fractals 1,451 (1993),CrossRefGoogle Scholar
41 , Argoul, , Kuhn and , Arneodo, to appear in J. Electrochem Soc. and to appear in Physica A.Google Scholar
42 Trigueros, P., Sagues, F. and Claret, J., Phys. Rev. E 49, 4328 (1994).CrossRefGoogle Scholar
43 Luo, G. P., Ai, Z. M., Lu, Z. H. and Wei, Y., Phys. Rev. E 50, 409 (1994).CrossRefGoogle Scholar
44 Fleury, V., Rosso, M. and Chazalviel, J.-N., in preparation.Google Scholar
45 Fleury, V., Rosso, M. and Chazalviel, J.-N., proceedings of the 1994 Materials Week of the Metals, Minerals and Metals Society (Rosemont), Merchant, Harish Editor.Google Scholar
46 Carro, P., Marchiano, S. L., Creus, A. Hernandez, Gonzalez, S., Salvarezza, R. C. and Arvia, A. J., Phys. Rev. E 48, R2374 (1993).CrossRefGoogle Scholar
47 Bruinsma, R. and Alexander, S., J. chem. Phys. 92, 3074 (1990).CrossRefGoogle Scholar
48 Linehan, K. and Bruyn, J. de, to appear in Canadian Journal of Physics (1994).Google Scholar
49 Fleury, V., PhD dissertation, Ecole Polytechnique, (1991).Google Scholar
50 Liu, Z., PhD dissertation, University of New Hampshire, (1994).Google Scholar
51 Kuhn, A., PhD dissertation, University of Bordeaux I, (1994).Google Scholar
52 Mandelbrot, Benoît, Fractals: Form. Chance and dimension, Freeman (San Francisco, 1977).Google Scholar
53 Witten, T.A. and Sander, L.M., Phys. Rev. Lett 47, 440 (1981).CrossRefGoogle Scholar
54 Sommerfeld, Arnold, Mechanics of Deformable Bodies, Chapter IV.Google Scholar
55 Guyon, E., Hulin, J.-P. and Petit, L., Hvdrodynamioque Physique, InterEditions/CNRS, 1991, (Paris).Google Scholar
56 Phillips, O. M., Proc. Camb. Phil. Soc. 52, 135 (1954).CrossRefGoogle Scholar
57 Saffman, P. G., Studies in Applied Mathematics XLIX, 371 (1970).CrossRefGoogle Scholar
58 Simpson, John E., Gravity Currents, Ellis Howood (1987).Google Scholar
59 Huppert, H. E., J. Fluid. Mech. 121, 43 (1982).CrossRefGoogle Scholar
60 Chazalviel, J.-N., in preparation.Google Scholar
61The so-called "Hecker effect" seems to have been observed independently by several authors, including Lui Lam and the eponymous Nancy Hecker. As a matter of fact, images of inhomogeneous deposits exhibiting transitions lines can be found in the literature, and the effect of impurities is so ordinary in electrochemistry that it had not received a specific name.Google Scholar
62 Handbook of crvstal growth 1. Hurle, C. J. Editor, North Holland (1993).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Recent Progress in Electrochemical Deposition without Supporting Electrolyte
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Recent Progress in Electrochemical Deposition without Supporting Electrolyte
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Recent Progress in Electrochemical Deposition without Supporting Electrolyte
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *