Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T18:21:26.958Z Has data issue: false hasContentIssue false

Recent Progress in Electrochemical Deposition without Supporting Electrolyte

Published online by Cambridge University Press:  03 September 2012

V. Fleury
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
M. Rosso
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
J.-N. Chazalviel
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
Get access

Abstract

Electrochemical deposition (ECD) of metals is a very old subject[l], which has considerable applications in the context of electroshaping or electroplating. Electrochemists and chemical engineers have long known the different growth conditions of these metal aggregates and the different parameters which drive morphological changes, at least empirically [2-4]. However, in the recent years, after the introduction of the concept of fractal aggregation[5,6], in the field of non-linear pattern formation[7,8], a lot of work has been devoted to the specific problem of growth of electrodeposits from binary electrolytes [9-51] (i.e. without supporting electrolyte). These studies aimed at understanding the morphology, on the large scale (∼1cm) of the deposits and, more specifically, the transitions between morphologies. It is the aim of this paper to review the progress which has been achieved in the past five years on this question.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sheldon, S. and Downing, G. M., Phys. Rev. 1 (1) 51 (1893). This reference shows that morphological aspects were addressed in very early work on electrochemical deposition.Google Scholar
2 Bockris, J. O.'M. and Reddy, K. N., Modern Electrochemiitry Plenum/Rosetta New York(1977).Google Scholar
3 Dini, Jack W., Electrodeposition, Noyes Publications (New Jersey, USA) (1992 ).Google Scholar
4 Ramasany, P., in Handbook of crystal growth 1a, Hurle, C. J. editor, North Holland, (1993).Google Scholar
5NATO ASI Series 100 (1986): On Growth and Form, and 157 (1989): Random Fluctuations and Pattern Growth, Edited by Gene Stanley and Nicole Ostrowsky. Martinus Nijhoff Publishers, Kluwer Academic Publishers Group (Boston).Google Scholar
6 Vicsek, Tamas, Fractal Growth Phenomena, World Scientific (Singapore), Second Edition (1992) and references therein.Google Scholar
7 Ben-Jacob, Eshel and Garik, Peter, Nature 343, 523 (1990).Google Scholar
8 Pelcé, p., Dynamics of curved fronts, Academic Press (London, 1991), and references therein.Google Scholar
9 Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).Google Scholar
10 Sawada, Y., Dougherty, A., and Gollub, J. P., Phys. Rev. Lett. 56, 1260 (1986).Google Scholar
11 Grier, D., Ben-Jacob, E., Clarke, R. and Sander, L. M., Phys. Rev. Lett. 56, 2315 (1986).Google Scholar
12 Grier, D. G., Ben-Jacob, E., Clarke, R. and Sander, L. M., Phys. Rev. Lett. 56, 1264 (1986) and David G. Grier and Daniel Mueth, Phys. Rev. E 48, 3841 (1993).Google Scholar
13 Argoul, F., Arneodo, A., Grasseau, G. and Swinney, H. L., Phys. Rev. Lett. 61, 2558 (1988).Google Scholar
14 Hibbert, D. B. and Melrose, J. R., Phys. Rev. A 38, 10361048, (1988).Google Scholar
15 Melrose, J. R. and Hibbert, D. B., Proc. R. Soc. Lond. A 423, 149, (1989).Google Scholar
16 Chazalviel, J.-N., Phys. Rev. A 42, 7355 (1990).Google Scholar
17 Fleury, V., Chazalviel, J.-N., Rosso, M. and Sapoval, B., J. Electroanal. Chem. 290, 249 (1990).Google Scholar
18 Fleury, V., Chazalviel, J.-N., Rosso, M., and Sapoval, B., Ann. Chim. Fr. 16, 143 (1991).Google Scholar
19 Fleury, V., Rosso, M., Chazalviel, J.-N., and Sapoval, B., Phys. Rev. A 44, 6693 (1991).Google Scholar
20 Fleury, V., Rosso, M. and Chazalviel, J.-N., Phys. Rev. A 43, 6908 (1991).Google Scholar
21 Kahanda, G.L.M.K.S. and Tomkiewicz, M., J. Electrochem. Soc. 136, (1989).Google Scholar
22 Lam, L., Pochy, R. D. and Castillo, V. M., in Non-linear Structures in Physical Systems, eds. Lam, L. and Morris, H. C. (Springer, New york, 1990).Google Scholar
23 Pochy, R. D., Garcia, A., Freimuth, R. D., Castillo, V. M. and Lam, L., Physica D 51 539, (1991).Google Scholar
24 Matsushita, M., Experimental Observation of Aggregations, The Fractal Approach to Heterogeneous Chemistry, Edited by Avnir, D., John Wiley & Sons Ltd, 1989.Google Scholar
25 Melrose, J. R., Hibbert, D.B. and Ball, R. C., Phys. Rev. Lett. 65, 3009 (1990).Google Scholar
26 Trigueros, P. P, Claret, J., Mas, F. M. and Sagués, F., J. Electroanal. Chem. 328, 165 (1992) and J. Electroanal Chem. 312, 219 (1991).Google Scholar
27 Fleury, V., Rosso, M. and Chazalviel, J.-N., Phys. Rev. Lett. 68, 2492, (1992).Google Scholar
28 Fleury, V., Rosso, M. and Chazalviel, J.-N., Phys. Rev. E. 48, 1279 (1993).Google Scholar
29 Rosso, M., Chazalviel, J.-N., Fleury, V., and Chassaing, E., Electrochimica Acta 39, 507515 (1994).Google Scholar
30 Cork, R.H., Pritchard, D.C. and Tam, W.Y., Phys. Rev. A 44, 6940 (1991).Google Scholar
31 Fleury, V., Kaufman, J. H. and Hibbert, D. B., Phys. Rev E 48, 3831, (1993).Google Scholar
32 Fleury, V., Kaufman, J. H. and Hibbert, D. B., Nature 367, 435 (1994).Google Scholar
33 Barkey, D., Garik, P., E. Ben-Jacob, Miller, B. and Orr, B., J. Electrochem Soc. 139, (1992).Google Scholar
34 Barkey, D., J. Electrochem. Soc. 138, 2912 (1991).Google Scholar
35 Barkey, D., Watt, D., Liu, Z. and Raber, S., J. Electrochem. Soc. 141, 1206 (1994).Google Scholar
36 Wang, Mu, Enckevort, Willem J.P. van, Ming, Nai-ben and Bennema, Piet, Nature, 367 438441 (1994).Google Scholar
37 Okubo, S., Mogi, I. and Nakagawa, Y., Sci. Rep. Ritu, A 38 383390 (1993) and I. Mogi, S.Okubo and Y.Nakagawa, Journal of Crystal Growth 128 258-26 1 North Holland Elsevier (1993).Google Scholar
38 Garikc, p., Hetrick, J., Orr, B., Barkey, D. and Ben-Jacob, E., Phys. Rev. Lett. 66, 1606 (1991).Google Scholar
39 Kuhn, A. and Argoul, F., Phys. Rev. E 49, 4298 (1994).Google Scholar
40 Kuhn, A. and Argoul, F., Fractals 1,451 (1993),Google Scholar
41 , Argoul, , Kuhn and , Arneodo, to appear in J. Electrochem Soc. and to appear in Physica A.Google Scholar
42 Trigueros, P., Sagues, F. and Claret, J., Phys. Rev. E 49, 4328 (1994).Google Scholar
43 Luo, G. P., Ai, Z. M., Lu, Z. H. and Wei, Y., Phys. Rev. E 50, 409 (1994).Google Scholar
44 Fleury, V., Rosso, M. and Chazalviel, J.-N., in preparation.Google Scholar
45 Fleury, V., Rosso, M. and Chazalviel, J.-N., proceedings of the 1994 Materials Week of the Metals, Minerals and Metals Society (Rosemont), Merchant, Harish Editor.Google Scholar
46 Carro, P., Marchiano, S. L., Creus, A. Hernandez, Gonzalez, S., Salvarezza, R. C. and Arvia, A. J., Phys. Rev. E 48, R2374 (1993).Google Scholar
47 Bruinsma, R. and Alexander, S., J. chem. Phys. 92, 3074 (1990).Google Scholar
48 Linehan, K. and Bruyn, J. de, to appear in Canadian Journal of Physics (1994).Google Scholar
49 Fleury, V., PhD dissertation, Ecole Polytechnique, (1991).Google Scholar
50 Liu, Z., PhD dissertation, University of New Hampshire, (1994).Google Scholar
51 Kuhn, A., PhD dissertation, University of Bordeaux I, (1994).Google Scholar
52 Mandelbrot, Benoît, Fractals: Form. Chance and dimension, Freeman (San Francisco, 1977).Google Scholar
53 Witten, T.A. and Sander, L.M., Phys. Rev. Lett 47, 440 (1981).Google Scholar
54 Sommerfeld, Arnold, Mechanics of Deformable Bodies, Chapter IV.Google Scholar
55 Guyon, E., Hulin, J.-P. and Petit, L., Hvdrodynamioque Physique, InterEditions/CNRS, 1991, (Paris).Google Scholar
56 Phillips, O. M., Proc. Camb. Phil. Soc. 52, 135 (1954).Google Scholar
57 Saffman, P. G., Studies in Applied Mathematics XLIX, 371 (1970).Google Scholar
58 Simpson, John E., Gravity Currents, Ellis Howood (1987).Google Scholar
59 Huppert, H. E., J. Fluid. Mech. 121, 43 (1982).Google Scholar
60 Chazalviel, J.-N., in preparation.Google Scholar
61The so-called "Hecker effect" seems to have been observed independently by several authors, including Lui Lam and the eponymous Nancy Hecker. As a matter of fact, images of inhomogeneous deposits exhibiting transitions lines can be found in the literature, and the effect of impurities is so ordinary in electrochemistry that it had not received a specific name.Google Scholar
62 Handbook of crvstal growth 1. Hurle, C. J. Editor, North Holland (1993).Google Scholar