Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 4.135 Render date: 2021-03-07T03:39:48.819Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Rational Design of Organic Electro-Optic Materials

Published online by Cambridge University Press:  15 March 2011

Alex Jen
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Robert Neilsen
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A.
Bruce Robinson
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A.
William H. Steier
Affiliation:
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-0483
Larry Dalton
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A.
Get access

Abstract

A number of material properties must be optimized before organic electro-optic materials can be used for practical device applications. These include electro-optic activity, optical transparency, and stability including both thermal and photochemical stability. Exploiting an improved understanding of the structure/function relationships, we have recently prepared materials exhibiting electro-optic coefficients of greater than 50 pm/V and optical loss values of less than 0.7 dB/cm at the telecommunication wavelengths of 1.3 and 1.55 microns. When oxygen is excluded to a reasonable extent, long-term photostability to optical power levels of 20 mW has been observed. Photostability is further improved by addition of scavengers and by lattice hardening. Long-term (greater than 1000 hours) thermal stability of poling-induced electro-optic activity is also observed at elevated temperatures (greater than 80°C) when appropriate lattice hardening is used. The successful improvement of organic electro-optic materials rests upon (1) attention to the design of chromophore structure including design to inhibit unwanted intermolecular electrostatic interactions and to improve chromophore instability and (2) attention to processing conditions including those involved in spin casting, electric field poling, and lattice hardening. A particularly attractive new direction has been the exploitation of dendrimer structures and particularly of multi-chromophore containing dendrimer structures. This approach has permitted the simultaneous improvement of all material properties. Development of new materials has facilitated the fabrication of a number of prototype devices and most recently has permitted investigation of the incorporation of electro-optic materials into photonic bandgap and microresonator structures. The latter are relevant to active wavelength division multiplexing (WDM). Significant quality factors (greater than 10,000) have been realized for such devices permitting wavelength discrimination at telecommunication wavelengths of 0.01 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Shi, Y., Lin, W., Olson, D. J., Bechtel, J. H., Zhang, H., Steier, W. H., Zhang, C., and Dalton, L. R., Science 288, 119 (2000).CrossRefGoogle Scholar
2. Shi, Y., Lin, W., Olson, D. J., Bechtel, J. H., Zhang, H., Steier, W. H., Zhang, C., and Dalton, L. R., Appl. Phys. Lett. 77, 3525 (2000).Google Scholar
3. Teng, C. C., Appl. Phys. Lett. 60, 1538 (1992).CrossRefGoogle Scholar
4. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett. 7, 638 (1995).CrossRefGoogle Scholar
5. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H., Dalton, L. R., and Chow, P. M. D., Appl. Phys. Lett. 67, 1806 (1995).CrossRefGoogle Scholar
6. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., and Shi, Y., Appl. Phys. Lett. 70, 3335 (1997).CrossRefGoogle Scholar
7. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., and Shi, Y., Proc. SPIE 3006, 314 (1997).CrossRefGoogle Scholar
8. Chen, D., Bhattacharya, D., Udupa, A., Tsap, B., Fetterman, H. R., Chen, A., Lee, S. S., Chen, J., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett. 11, 54 (1999).CrossRefGoogle Scholar
9. Chen, A., Chuyanov, V., Marti-Carrera, F. I., Garner, S., Steier, W. H., Chen, J., Sun, S., and Dalton, L. R., Proc. SPIE 3005, (1997).Google Scholar
10. Garner, S. M., Lee, S. S., Chuyanov, V., Yacoubian, A., Chen, A., Steier, W. H., Zhu, J., Chen, J., Wang, F., Ren, A. S., and Dalton, L. R., Proc. SPIE 3491, 421 (1998).CrossRefGoogle Scholar
11. Garner, S. M., Lee, S.-S., Chuyanov, V., Chen, A., Yacoubian, A., Steier, W. H., and Dalton, L. R., IEEE J. Sel. Topics Quantum Electron. 35, 1146 (1999).CrossRefGoogle Scholar
12. Steier, W. H., Chen, A., Lee, S.-S., Garner, S., Zhang, H., Chuyanov, V., Dalton, L. R., Wang, F., Ren, A. S., Zhang, C., Todorova, G., Harper, A. W., Fetterman, H. R., Chen, D., Udupa, A., Bhattacharya, D., and Tsap, B., Chem.Phys. 245, 487 (1999).CrossRefGoogle Scholar
13. Dalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A., Garner, S., Chen, A., Londergan, T., Irwin, L., Carlson, B., Fifield, L., Phelan, G., Kincaid, C., Amend, J., and Jen, A., J. Chem. Mater. 9, 1905 (1999).CrossRefGoogle Scholar
14. Lee, S. S., Udupa, A. H., Erlig, H., Zhang, H., Chang, Y., Zhang, C., Chang, D.H., Bhattacharya, D., Tsap, B., Steier, W. H., Dalton, L. R., and Fetterman, H. R., IEEE Microwave and Guided Wave Lett. 9, 357 (1999).Google Scholar
15. Udupa, A. H., Erlig, H., Tsap, B., Chang, Y., Chang, D., Fetterman, H. R., Zhang, H., Lee, S. S., Wang, F., Steier, W. H., and Dalton, L. R., Electron. Lett. 35, 1702 (1999).CrossRefGoogle Scholar
16. Shi, Y., Wang, W., Bechtel, J. H., Chen, A., Garner, S., Kalluri, S., Steier, W. H., Chen, D., Fetterman, H. R., Dalton, L. R., and Yu, L., IEEE J. Sel. Topics Quantum Electron. 2, 289 (1996).CrossRefGoogle Scholar
17. Mao, S. S. H., Ra, Y., Guo, L., Zhang, C., Dalton, L. R., Chen, A., Garner, S., and Steier, W. H., Chem. Mater. 10, 146 (1998).CrossRefGoogle Scholar
18. Dalton, L. R., Polymers for electro-optic modulator waveguides, Electrical and Optical Polymer Systems: Fundamentals, Methods, and Applications, eds. Wise, D. L., Cooper, T. M., Gresser, J. D., Trantolo, D. J., and Wnek, G. E., (World Scientific, 1998), pp. 609661.Google Scholar
19. Robinson, B. H., Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Zhang, C., Todorova, G., Lee, M., Aniszfeld, R., Garner, S. M., Chen, A., Steier, W. H., Houbrecht, S., Persoons, A., Ledoux, I., Zyss, J, and Jen, A. K. Y., Chem. Phys. 245, 35 (1999).CrossRefGoogle Scholar
20. Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind. Eng. Chem. Res. 38, 8 (1999).CrossRefGoogle Scholar
21. Zhang, C., Wang, C., Dalton, L. R., Zhang, H., and Steier, W. H., Macromolecules 34, 253 (2001).CrossRefGoogle Scholar
22. Zhang, C., Dalton, L. R., Oh, M.-C., Zhang, H., and Steier, W. H., Chem. Mater. 13, 3043 (2001).CrossRefGoogle Scholar
23. Ma, H., Chen, B., Takafumi, S., Dalton, L. R., and A. Jen, K.-Y., J. Am. Chem. Soc. 123, 986 (2001).CrossRefGoogle Scholar
24. Dalton, L. R., Nonlinear optical polymeric materials, Advances in Polymer Science, vol. 158 (Springer-Verlag, Heidelberg, 2001).Google Scholar
25. Dalton, L. R., Harper, A. W., and Robinson, B. H., Proc. Natl. Acad. Sci. USA 94, 4842 (1997).CrossRefGoogle Scholar
26. Robinson, B. H. and Dalton, L. R., J. Phys. Chem. 104, 4785 (2000).CrossRefGoogle Scholar
27. Pereverev, Y. V., Prezhdo, O. V., and Dalton, L. R., Chem. Phys. Lett. 340, 328 (2001).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rational Design of Organic Electro-Optic Materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rational Design of Organic Electro-Optic Materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rational Design of Organic Electro-Optic Materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *