Skip to main content Accessibility help
×
Home

Rapid Isothermal Annealing of Doped and Undoped Spin-on Glass Films

Published online by Cambridge University Press:  15 February 2011

A. Slaoui
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
L. Ventura
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
A. Lachiq
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
R. Monna
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
J. C. Muller
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
Get access

Abstract

The rapid thermal annealing of doped (SOD) and undoped (SOG) glass films spinned onto silicon from diluted or undiluted solutions has been investigated. The dilution performed by methanol has allowed to obtain oxide films as thin as 10 nm.

The optical measurements of annealed SOG films have shown that good oxide films without oxygen deficiency are achievable. The electrical characteristics of Al-gate capacitors assessed by Capacitance-voltage measurements have shown a great dependence of the water content in the range of 600–850°C before reaching a typical dielectric constant value near 3.8 at higher temperatures. Low Interface state densities values obtained at temperature up to 900°C confirm the curing effect of a rapid thermal annealing.

On the other hand, we have demonstrated that the efficiency of rapid thermal diffusion from boron or phosphorus SOD films deposited on Si wafers depends on the source composition and its thickness. In particular, we have shown that it is possible to control the junction depth, the surface concentration and the minority-carrier diffusion length by varying the amount of dopant concentration in the solution, the thickness of the doped oxide film and the rapid thermal processing parameters. Futhermore, the remaining doped SOG film can play the role of an efficient oxide passivation layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Nakamura, M., Kanzawa, R. and Sakai, K., J. Electrochem. Soc. 133, 1167(1986).CrossRefGoogle Scholar
2. Sameshima, T. and Usui, S., Jap. J. Appl. Phys. 26,L1208 (1987).CrossRefGoogle Scholar
3. Slaoui, A., Foulon, F. and Siffert, P., J. Appl. Phys. 67, 6197 (1990).CrossRefGoogle Scholar
4. Zagozdzon-Wosik, W., Grabiec, P. B. and Lux, G., MRS proc. V303, ed. by Gelpey, J.C., Elliot, J.K., Wortman, J.J. and Ajmara, A. (1993).Google Scholar
5. Eichammer, W., Quat, V. T. and Siffert, P., J. Appl. Phys. 66, 3857 (1989).CrossRefGoogle Scholar
6. Hartiti, B., Slaoui, A., Muller, J. C., Stuck, R. and Siffert, P., J. Appl. Phys. 71, 5474(1992)CrossRefGoogle Scholar
6. Hartiti, B., Schindler, R., Slaoui, A., Wagner, B., Muller, J.C., Reis, I., Eyer, A. and Siffert, P., Progress in Photovoltaic : Reserach and Applications, 2, 129 (1994) ; R. Schindler, I. Reis, B. Wagner, A. Eyer, H. Lautenschlager, C. Schetter, W. Warta, B. Hartiti, A. Slaoui, J. C. Muller and P. Siffert, 23rd IEEE PV conf.(1993), p. 159.CrossRefGoogle Scholar
8. Geedham, A. M., Goodman, L. A. and Gossenberg, H. F., RCA 44, 326, 1983.Google Scholar
9. Ventura, L., Hartiti, B., Slaoui, A., Muller, J. C. and Siffert, P., MRS Conf. Proc., V. 284, ed. Kanicki, J. and Devine, R.A.B., (1992)Google Scholar
10. Pliskin, W. A., J. Vac. Sci. 14,1064(1977).CrossRefGoogle Scholar
11. Pliskin, W. A. and Lehmann, A., J. Electrochem. Soc. 112 (1965) 1013 CrossRefGoogle Scholar
12. Schumann, L., Lehmann, H. S., Sobotta, H., Riede, V., Teschner, U., Hubner, K., Phys. Stat. Sol,. B110, K 69(1962).Google Scholar
13. Uoochi, Y., Tabuchi, A. and Furumura, Y., J. Electrochem. Soc. 137, 3923(1990).CrossRefGoogle Scholar
14. Almeida, R. M. and Puntano, C. G., J. Appl. Phys. 68, 4225(1990).CrossRefGoogle Scholar
15. Terman, L. M., Solid State Electron 5,285(1962).CrossRefGoogle Scholar
16. Usami, A., Ando, M., Tsunckane, M. and Wada, T., IEEE Trans. El.. Dev. 39, 105 (1992).CrossRefGoogle Scholar
17. Zagozdzon-Wosik, W., Grabiec, P. B. and Lux, G., J. Appl. Phys. 75,337(1994).CrossRefGoogle Scholar
18. Reindl, K., Solid-State Electronics, 16,181(1973).CrossRefGoogle Scholar
19. Itoh, S., Homma, Y., Sasaki, E., Uchimura, S. and Morishima, H., J. Elect.Soc. 137,1212 (1990).CrossRefGoogle Scholar
20. Ventura, L., Slaoui, A., Hartiti, B., Muller, J. C., Stuck, R. and Siffert, P., MRS Conf. V. 342, ed. Wortman, J.J., Gelpey, J.C., Green, M.L., Brueck, S.R.J. and Roozeboom, F., (1994)p.345.Google Scholar
21. Boltaks, B.I., Diffusion in Semiconductors, Chap.4, Infosearch Ltd. London (1963).Google Scholar
22. Fair, R.B. and Tsai, J.C.C., J. Electrochem. Soc. 124, 1107(1977).CrossRefGoogle Scholar
23. Fair, R. B., in “Physics and Chemistry of Impurity Diffusion and Oxidation of Silicon”, ed. by Kahng, D (Academic Press, New York, 1981), p. 1.Google Scholar
24. Zagozdzon-Wosik, W. and Grabiec, P., RTP'93 conference, Scottdale, USA (1993).Google Scholar
25. Rastogi, M., Zagozdzon-Wosik, W., Romero-Borja, F., Heddleson, J.M., Beavers, R., Grabiec, P. and Wood, L.T., ref.20.Google Scholar
26. Miyake, M., J. Electrochem. Soc. 138,3031 (1991).CrossRefGoogle Scholar
27. Usami, A., Ando, M., Tsunekane, M., Yamamoto, K., Wada, T., Inoue, Y., 18th IEEE PVSEC conf. (1985), p.797.Google Scholar
28. Thakur, R. P. S., and Singh, R., Appl. Phys. Lett. 64, 327 (1994).CrossRefGoogle Scholar
29. Cho, B. J., and Kim, C. K., SPIE 180, 180 (1990).Google Scholar
30. Hartiti, B., Slaoui, A., Muller, J.C. and Siffert, P., Appl. Phys. Lett. 63, 1249(1993).CrossRefGoogle Scholar
31. Hartiti, B., Quat, V.T., Eichhammer, W. and Muller, J.C., Appl. Phys. Lett. 55, 873 (1989).CrossRefGoogle Scholar
32. Schröter, W. and Kühnapfel, R., Appl. Phys. Lett. 56, 2207(1990).CrossRefGoogle Scholar
33. Kang, J. S. and Schroder, D. K., J. Appl. Phys. 65, 2974(1989).CrossRefGoogle Scholar
34. Lecrosnier, D., Poupon, J., Richou, F., Pelous, G. and Bernièe, F., J. Appl. Phys. 52,52(1991).Google Scholar
35. Kane, D.E. and Swanson, R.M., ref. 27, p.578.Google Scholar
36. Ventura, L., Slaoui, A., Schindler, R., Loghmarti, M., Muller, J. C., Stuck, R. and Siffert, P., 12th European Photovoltaic Solar Energy Conference, (1994)p.560.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-p5tlp Total loading time: 1.102 Render date: 2021-01-26T09:17:16.413Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rapid Isothermal Annealing of Doped and Undoped Spin-on Glass Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rapid Isothermal Annealing of Doped and Undoped Spin-on Glass Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rapid Isothermal Annealing of Doped and Undoped Spin-on Glass Films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *