Skip to main content Accessibility help
×
Home

Rapid and Sensitive Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor

Published online by Cambridge University Press:  17 January 2012

Joonhyung Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Youn-Suk Choi
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Yeolho Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Hun Joo Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Jung Nam Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Sang Kyu Kim
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Kyung Yeon Han
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Eun Chol Cho
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Jae Chan Park
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Soo Suk Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Get access

Abstract

We present a rapid and sensitive surface acoustic wave (SAW) immunosensor that utilizes gold staining as a signal enhancement method. A sandwich immunoassay was performed on sensing area of the SAW sensor, which could specifically capture and detect cardiac markers (cardiac troponin I (cTnI), creatine kinase (CK)-MB, and myoglobin). The analytes in human serum were captured on gold nanoparticles (AuNPs) that were conjugated in advance with detection antibodies. Introduction of these complexes to the capture antibody-immobilized sensor surface resulted in a classic AuNP-based sandwich immunoassay format that has been used for signal amplification. In order to achieve further signal enhancement, a gold staining method was performed, which demonstrated that it is possible to obtain gold staining-mediated signal augmentation on a mass-sensitive device. The sensor response due to gold staining varied as a function of cardiac marker concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Wu, G. H., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., and Majumdar, A., Nat. Biotechnol. 19, 856 (2001).CrossRefGoogle Scholar
2. Lee, J., Icoz, K., Roberts, A., Ellington, A. D., Savran, C. A., Anal. Chem. 82, 197 (2010).CrossRefGoogle Scholar
3. Yang, L. T., Fung, C. W., Cho, E. J., and Ellington, A. D., Anal. Chem. 79, 3320 (2007).CrossRefGoogle Scholar
4. Savran, C. A., Knudsen, S. M., Ellington, A. D., and Manalis, S. R., Anal. Chem. 76, 3194 (2004).CrossRefGoogle Scholar
5. Lyon, L. A., Musick, M. D., and Natan, M. J., Anal. Chem. 70, 5117 (1998).Google Scholar
6. Knudsen, S. M., Lee, J., Ellington, A. D., and Savran, C. A., J. Am. Chem. Soc. 128, 15936 (2006).CrossRefGoogle Scholar
7. Lee, H. J., Namkoong, K., Cho, E. C., Ko, C., Park, J. C., Lee, S. S., Biosens. Bioelectron. 24, 3120 (2009).CrossRefGoogle Scholar
8. Du, J., Harding, G. L., Ogilvy, J. A., Dencher, P. R., and Lake, M., Sens. Actuators, A: Phys. 56, 211 (1996).CrossRefGoogle Scholar
9. Jakoby, B., and Vellekoop, M. J., Sens. Actuators, A: Phys. 68, 275 (1998).CrossRefGoogle Scholar
10. Gizeli, E., Goddard, N. J., Lowe, C. R., and Stevenson, A. C., Sens. Actuators, B 6, 131 (1992).CrossRefGoogle Scholar
11. Gizeli, E., Stevenson, A. C., Goddard, N. J., and Lowe, C. R., IEEE Trans. Ultason. 39, 657 (1992).CrossRefGoogle Scholar
12. Kovacs, G., and Venema, A., Appl. Phys. Lett. 61, 639 (1992).CrossRefGoogle Scholar
13. Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., Walton, A. J., and Milne, W. I., Sens. Actuators, B 143, 606 (2010).CrossRefGoogle Scholar
14. Bender, F., Cernosek, R., and Josse, F., Electron. Lett. 36, 1672 (2000).CrossRefGoogle Scholar
15. Kim, D., Daniel, W. L., and Mirkin, C. A., Anal. Chem. 81, 9183 (2009).CrossRefGoogle Scholar
16. Kavsak, P. A., MacRae, A. R., Yema, M., and Jeffe, A. S., Clinical Chemistry 55, 573 (2009).CrossRefGoogle Scholar
17. Mohammed, M., and Desmulliez, M. Y., Lab Chip 11, 569 (2011).CrossRefGoogle Scholar
18. Kondoh, J., Matsui, Y., and Shiokawa, S., Jpn. J. Appl. Phys. 32, 2376 (1993).CrossRefGoogle Scholar
19. Masson, J. F., Obando, L., Beaudoin, S., and Booksh, K., Talanta. 62, 865 (2004).CrossRefGoogle Scholar
20. Wei, J., Mu, Y., Song, D., Fang, X., Liu, X., Bu, L., Zhang, H., Zhang, G., Ding, J., Wang, W., Jin, Q., and Luo, G., Anal. Biochem. 321, 209 (2003).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-wd6lz Total loading time: 0.579 Render date: 2021-01-16T06:50:50.546Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 05:51:00 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rapid and Sensitive Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rapid and Sensitive Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rapid and Sensitive Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *