No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavyion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550°C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from 0 to 5 dpa) and temperature (from 175 to about 350°C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 8 at% after irradiation doses to 10 dpa at an intermediate temperature of 325°C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutronirradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.