Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gblv7 Total loading time: 0.499 Render date: 2022-05-26T16:51:41.080Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Purpose-Built Anisotropic Metal Oxide Nanomaterials

Published online by Cambridge University Press:  21 March 2011

Lionel Vayssieres
Affiliation:
Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
Jinghua Guo
Affiliation:
Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
Joseph Nordgren
Affiliation:
Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
Get access

Abstract

Large arrays of perpendicularly oriented anisotropic nanoparticles of ferric oxyhydroxide (Akaganeite, β-FeOOH) and oxide (Hematite, α-Fe2O3) of typically 3-5 nm in diameter, self-assembled as bundles of about 50 nm in diameter and of up to 1 μm in length have been successfully grown onto polycrystalline substrates without template and/or surfactant by heteronucleation from an aqueous solution of ferric salts and their optical and electronic properties investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jambor, J. L. and Dutrizac, J. E., Chem. Rev. 98, 25492585 (1998).CrossRefGoogle Scholar
2. Stumn, W. and Morgan, J.J., Aquatic Chemistry (Wiley, 1996).Google Scholar
3. Winklemann, G., helm, F. Van der and Neidlans, J. B., Iron transport in Microbes, Plants and Animals (VCH, 1987).Google Scholar
4. Garvie, L. A. J. and Buseck, P. R., Nature 396, 667670 (1998).CrossRefGoogle Scholar
5. Kostka, J. E., Haefele, E., Viehweger, R. and Stuck, J.W., Environ. Sci. Technol. 33, 31273133 (1999).CrossRefGoogle Scholar
6. Bao, H. M., Koch, P. L. and Hepple, R. P., J. Sediment. Res. 68(5), 727738 (1998).CrossRefGoogle Scholar
7. Ellwood, B. B., Petruso, K. M., Harrold, F. B. and Schuldenrein, D., J. Archeological Sci. 24, 569573 (1997).CrossRefGoogle Scholar
8. Morris, R.V., Golden, D.C., Shelter, T.D. and Lauer, H.V., Meteorit. Planet. Sci. 33(4), 743751 (1998).CrossRefGoogle Scholar
9. Stumm, W. and Sulzberger, B., Geochim. Cosmochim. Acta 56(8), 32333257 (1992).CrossRefGoogle Scholar
10. Kletetschka, G., Wasilewski, P. and Taylor, P., Phys. Earth Planet. In. 119, 259267 (2000).CrossRefGoogle Scholar
11. Lovley, D. R., Microbiol. Rev. 55(2), 259287 (1991).Google Scholar
12. Cornell, R. M. and Schwertmann, U., The Iron Oxides (VCH, 1996).Google Scholar
13. Morse, P. G., Chem. Eng. News 76(41), 4262 (1998).Google Scholar
14. Tano, K., Öberg, E., Samskog, P. O., Monredon, T. and Broussaud, A., Powder Technol. 105, 443450 (1999).CrossRefGoogle Scholar
15. Ropenack, A. Von, in Dutrizac, J.E. and Monhemius, A.J. Eds. Iron control in Hydrometallurgy (Ellis Horwood, 1986) pp. 730741.Google Scholar
16. Pestman, R., Koster, R.M., Boellaard, E., Kraan, A.M. Van der and Ponec, V., J. Catal. 174, 142152 (1998).CrossRefGoogle Scholar
17. Lin, S-S. and Gurol, M. D., Environ. Sci. Technol. 32, 14171423 (1998).CrossRefGoogle Scholar
18. Zhang, Y., Ellison, J. E. and Cannon, J.C., Ind. Eng. Chem. Res. 36(5), 19481952 (1997).CrossRefGoogle Scholar
19. Matsumoto, Y., J. Solid State Chem. 126, 227234 (1996).CrossRefGoogle Scholar
20. Licht, S., Wang, B. and Ghosh, S., Science 285, 1391042 (1999).CrossRefGoogle Scholar
21. Kellog, C. B., Irikura, K. K., J. Phys. Chem. A 103(8), 11501159 (1999).CrossRefGoogle Scholar
22. Oh, S. E., Cook, D.C. and Townsend, H.E., Corrosion Sci. 41, 16871702 (1999).CrossRefGoogle Scholar
23. Fujii, T. et al. Surf. Sci. 366(3), 579586 (1996).CrossRefGoogle Scholar
24. Martinez, A., Pena, J., Labeau, M., Gonzalez-Calbet, J.M. and Vallet-Regi, M., J. Mater. Res. 10(5), 13071311 (1995).CrossRefGoogle Scholar
25. Siroky, K., Jiresova, J. and Hudec, L., Thin Solid Films 245(1-2), 211214 (1994).CrossRefGoogle Scholar
26. Weiss, W., Surf. Sci. 377(1-3), 943947 (1997).CrossRefGoogle Scholar
27. Vayssieres, L., Hagfeldt, A. and Lindquist, S.- E., Pure Appl. Chem. 72(1-2), 4752 (2000).CrossRefGoogle Scholar
28. Vayssieres, L., P h.D. Dissertation, Université Pierre et Marie Curie, Paris 1995.Google Scholar
29. Vayssieres, L., Chaneac, C., Tronc, E. and Jolivet, J.-P., J. Colloid Interface Sci. 205(2), 205212 (1998).CrossRefGoogle Scholar
30. Vayssieres, L., Hagfeldt, A., Lindquist, S.-E., patent pending.Google Scholar
31. Vayssieres, L., Beermann, N., Lindquist, S.-E. and Hagfeldt, A., Chem. Mater. (in press).Google Scholar
32. Vayssieres, L., Keis, K., Lindquist, S.-E. and Hagfeldt, A., submitted.Google Scholar
33. Björksten, U., Moser, J. and Grätzel, M., Chem. Mater. 6, 858863 (1994).CrossRefGoogle Scholar
34. Kennedy, J. H. and Frese, K. W., J. Electrochem. Soc. 125, 709 (1978).CrossRefGoogle Scholar
35. Beermann, N., Vayssieres, L., Lindquist, S.-E. and Hagfeldt, A., J. Electrochem. Soc. 147(7), 24562461 (2000).CrossRefGoogle Scholar
36. Guo, J.- H., Vayssieres, L., Såthe, C., Butorin, S. and J. Nordgren to be published.Google Scholar
37. Guo, J.-H., Vayssieres, L., Persson, C., Ahuja, R., and Nordgren, J. to be published.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Purpose-Built Anisotropic Metal Oxide Nanomaterials
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Purpose-Built Anisotropic Metal Oxide Nanomaterials
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Purpose-Built Anisotropic Metal Oxide Nanomaterials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *