Skip to main content Accessibility help
×
Home

Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications

Published online by Cambridge University Press:  10 February 2011


Anurag Jain
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Svetlana Rogojevic
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Satya V. Nitta
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Venumadhav Pisupatti
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
William N. Gill
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Peter C. Wayner
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Joel L. Plawsky
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
T. E. F. M. Standaert
Affiliation:
Department of Physics, State University of New York at Albany, Albany, NY 12222
G. S. Oehrlein
Affiliation:
Department of Physics, State University of New York at Albany, Albany, NY 12222

Abstract

Surface modified silica xerogel films of high porosity (60 - 90 %) and uniform thickness (0.4–2 μm) were fabricated at ambient pressure on silicon and silicon dioxide. The rheological properties that govern film uniformity were determined. A relation between the final dried film thickness and spin speed was developed. The porosity and thickness of the films could be controlled independently. The same porosity could be obtained over a wide range of aging time and temperature combinations. Fracture toughness was measured using the edge-lift-off technique. The best values were comparable to concrete. Surface modification was affected by treating the film with trimethylcholorosilane (TMCS) and other modifiers. Moisture adsorption was studied at 100% RH using a quartz crystal microbalance technique. Depending upon the degree and kind of surface treatment, films absorbed as much as 32% or as little as 2% of their weight in water. Dielectric constants (K), losses and breakdown strengths were comparable to values for calcined, bulk aerogels. Thin (≤ 500 Å) films of Copper (Cu) and Tantalum (Ta) were deposited on xerogel films and subjected to thermal annealing. No diffusion was observed within the limits of RBS. High-density plasma etching showed that the films etch an order of magnitude faster than conventional SiO2 films.


Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Prakash, S. S., Brinker, C. J., Hurd, A. J., J Non-Cryst. Solids, 190, 264, (1995).10.1016/0022-3093(95)00024-0CrossRefGoogle Scholar
2. Jin, C., Luttmer, J. D., Smith, D. M., Ramos, T. A., MRS Bulletin, p. 3942, Oct. (1997).10.1557/S0883769400034187CrossRefGoogle Scholar
3. Smith, D. M., Anderson, J. Cho, C-C., Gnade, B.E., Mat. Res. Soc. Symp. Proc Ser., 371, 261, (1995).10.1557/PROC-381-261CrossRefGoogle Scholar
4. Yang, H-S, Choi, S-Y., Hyun, S-H., Park, H-H., Hong, J-K., J. Non-Cryst. Solids, 221, 151, (1997).10.1016/S0022-3093(97)00335-9CrossRefGoogle Scholar
5. Ramos, T., Rhoderick, K., Roth, R., Brungardt, L., Wallace, S., Drage, J. Dunne, J. Endlisch, D. Katsanes, R., Viemes, N. Smith, D. M., Mat. Res. Soc. Symp. Ser., 511, 105, (1998).10.1557/PROC-511-105CrossRefGoogle Scholar
6. Hrubesh, L. H., and Poco, J.F., J. Non-Cryst. Solids, 188, 46, (1995).10.1016/0022-3093(95)00028-3CrossRefGoogle Scholar
7. Jo, M-H., Park, H-H., Kim, D-J., Hyun, S-H., Choi, S-Y., Paik, J-T., J. Appl. Phys., 82, 1299, (1997).10.1063/1.365902CrossRefGoogle Scholar
8. Jo, M-H., Hong, J-K., Park, H-H, Kim, J- J., Hyun, S-H., Choi, S-Y., Thin Solid Films, 308, 490, (1997).10.1016/S0040-6090(97)00437-9CrossRefGoogle Scholar
9. Jin, C. List, S. Zielinski, E. Mat. Res. Soc. Symp. Ser., 511, 213, (1998).10.1557/PROC-511-213CrossRefGoogle Scholar
10. Nitta, S. V., Pisupatti, V., Jain, A. Wayner, P. C. Jr., Gill, W. N., Plawsky, J. L., J. Vac. Sci. & Tech. B, 17(1), 205, (1999).10.1116/1.590541CrossRefGoogle Scholar
11. Nitta, S. V., Jain, A., Wayner, P. C. Jr., Gill, W. N., Plawsky, J. L., submitted to J. Appl. Phys., (1999)Google Scholar
12. Sacks, M., Sheu, R., J. Non-Cryst. Solids, 92, 383, (1987).10.1016/S0022-3093(87)80057-1CrossRefGoogle Scholar
13. Lawrence, C. J., Zhou, W., J. Non-Newtonian Flu. Mech., 39, 137, (1991).10.1016/0377-0257(91)80010-HCrossRefGoogle Scholar
14. Acrivos, A., Shah, M. J., Peterson, E. E., J. Appl. Phys., 31, 963, (1960).10.1063/1.1735785CrossRefGoogle Scholar
15. Jenekhe, S. A., Schuldt, S. B., Ind Eng. Chem. Fundam., 23, 432, (1984).10.1021/i100016a009CrossRefGoogle Scholar
16. Emslie, A. G., Bonner, T., and Peck, L. G., J. Appl. Phys., 29, 858, (1958).10.1063/1.1723300CrossRefGoogle Scholar
17. Shaffer, E. O., Mills, M. E., Hawn, D., Van Gestel, M., Knorr, A., Gundlach, H., Kumar, K., Kaloyeros, A. E., Geer, R. E., Mat. Res. Soc. Symp. Ser., 511, 133, (1998).10.1557/PROC-511-133CrossRefGoogle Scholar
18. Shaffer, E. O., McGarry, F. J., Hoang, L., Polym. Sci. & Eng., 36(18), 2375, (1996).10.1002/pen.10635CrossRefGoogle Scholar
19. Shaffer, E. O., Townsend, P. H., Im, J-hi, Conf Proc. ULSI XII, 429, (1997).Google Scholar
20. Nitta, S. V., Jain, A., Pisupatti, V., Wayner, P. C. Jr., Gill, W. N., Plawsky, J. L., Mat. Res. Soc. Symp. Ser., 511, 99, (1998).10.1557/PROC-511-99CrossRefGoogle Scholar
21. Brinker, C. J., and Scherer, G.W., Sol-Gel Science, Academic Press, New York, (1990).Google Scholar
22. Hrubesh, L.W., Keene, L.E., Lattore, V.R. Mat. Res., 8(7), 736, (1993).Google Scholar
23. Brüesch, P., Stucki, F., Baumann, Th., K-Weiss, P., Brül, B., Niemeyer, L., Strümpler, R., Mielke, M., Appl. Phys. A, Solids Surf 57, 329, (1993).10.1007/BF00332286CrossRefGoogle Scholar
24. Birdsell, E. D., Gerhardt, R. A., Mat. Res. Soc. Symp. Ser., 511, 111, (1998)10.1557/PROC-511-111CrossRefGoogle Scholar
25. Bakhru, H.; Kumar, A., Kaplan, T., Delarosa, M., Fortin, J., Yang, G.-R., Lu, T.-M., Kim, S., Steinbruchel, C., Tang, X., Moore, J. A., Wang, B., McDonald, J., Nitta, S., Pisupatti, V., Jain, A., Wayner, P., Plawsky, J., Gill, W. N., Jin, C., Mat. Res. Soc. Symp. Ser., 511, 125, (1998).10.1557/PROC-511-125CrossRefGoogle Scholar
26. Jo, M-H., Park, H-H., Appl. Phys. Lett., 72(11), 1391, (1998).10.1063/1.121065CrossRefGoogle Scholar
27. Sauerbrey, G. Z. fur Physik, 155, 206222 (1959).10.1007/BF01337937CrossRefGoogle Scholar
28. MacBrayer, J. D., Swanson, R.M., and Sigmon, T.W., J. Electrochem. Soc, 133, 1424, (1986).Google Scholar
29. Raghavan, G., Chiang, C., Anders, P. B., Tzeng, S., Villasol, R., Bai, G., Bohr, M. and Fraser, D. B., Thin Solid Films, 262, 168, (1995).10.1016/0040-6090(95)05839-7CrossRefGoogle Scholar
30. Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D., Oldham, W.G., J. Electrochem. Soc, 140, 2427, (1993).10.1149/1.2220837CrossRefGoogle Scholar
31. Gupta, D. Mat. Chem. and Phys., 41, 199, (1995).10.1016/0254-0584(95)01514-0CrossRefGoogle Scholar
32. Standaert, T. E. F. M., Matsuo, P. J., Allen, S. D., Oehrlein, G. S, Dalton, T. J., Lu, T. M., Gutmann, R., Mat. Res. Soc. Symp. Ser., 511, 265, (1998).10.1557/PROC-511-265CrossRefGoogle Scholar
33. Standaert, T. E. F. M., Schaepkens, M., Rueger, N. R. Sebel, P. G. M., Oehrlein, G. S., Cook, J. M., J. Vac. Sci. & Tech A, 16(1), 239, (1998).10.1116/1.580978CrossRefGoogle Scholar
34. Rueger, N. R., Beulens, J. J., Schaepkens, M., Doemling, M. F., Mirza, J. M., Standaert, T. E. F. M., Oehrlein, G. S., J. Vac. Sci. & Tech. B, 15(4), 1881, (1997).10.1116/1.580655CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-ltw6j Total loading time: 0.288 Render date: 2020-12-04T08:24:29.218Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 07:59:23 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *