Skip to main content Accessibility help
×
Home

Probing Optical Transitions in Porous Silicon by Reflectance Spectroscopy in the Near Infrared, Visible and UV

Published online by Cambridge University Press:  28 February 2011

W. Theiβ
Affiliation:
I. Phys. Inst., Aachen University of Technology (RWTH), D-52056 Aachen, Germany
R. Arens-Fischer
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Arntzen
Affiliation:
I. Phys. Inst., Aachen University of Technology (RWTH), D-52056 Aachen, Germany
M.G. Berger
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
S. Frohnhoff
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
S. Hilbrich
Affiliation:
I. Phys. Inst., Aachen University of Technology (RWTH), D-52056 Aachen, Germany
M. Wernke
Affiliation:
I. Phys. Inst., Aachen University of Technology (RWTH), D-52056 Aachen, Germany
Get access

Abstract

Reflectance spectroscopy has been used to obtain the dielectric function of the solid phase of porous silicon. The method is based on a fit of a parameterized dielectric function model to measured spectra. A crucial step in the procedure is the 'dielectric averaging' of the microscopic dielectric function of the pore wall material to the macroscopic effective dielectric function which governs the optical properties.

Results are given for heavily and moderately p-doped samples of various porosities. For the latter large differences to bulk silicon have been found. The obtained dielectric functions are compared to the results of band structure calculations taken from literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Proot, J.P., Delerue, C., Allan, G., Appl. Phys. Lett. 61 (16), 1948 (1992)CrossRefGoogle Scholar
2 Buda, F., Kohanoff, J., Parrinello, M., Phys. Rev. Lett. 69 (8), 1272 (1992)CrossRefGoogle Scholar
3 Sanders, G.D., Chang, Y.C., Phys. Rev. B 45, 9202 (1992)CrossRefGoogle Scholar
4 Kittel, C., Introduction to Solid State Physics, 5th Edition (John Wiley & Sons, New York 1976)Google Scholar
5 Theiβ, W., in Festkörperprobleme/Advances in Solid State Physics 33, ed. by Helbig, R. (Vieweg, Braunschweig, Wiesbaden 1994), 149 Google Scholar
6 Theiβ, W., Henkel, S., Arntzen, M., "Connecting microscopic and macroscopic properties of porous media: choosing appropriate effective medium concepts", Thin Solid Films, in pressGoogle Scholar
7 Theiβ, W., "IR spectroscopy of porous silicon", Contribution to the Les Houches Winter School "Luminescence of porous silicon and silicon nanostructures " (1994), to be publishedGoogle Scholar
8 Brendel, R., Bormann, D., J. Appl. Phys. 71 (1), 1 (1992)CrossRefGoogle Scholar
9 Sturm, J., doctoral thesis (in German), RWTH Aachen (1993)Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-6585876b8c-6qrbf Total loading time: 0.239 Render date: 2021-01-28T10:07:09.363Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Probing Optical Transitions in Porous Silicon by Reflectance Spectroscopy in the Near Infrared, Visible and UV
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Probing Optical Transitions in Porous Silicon by Reflectance Spectroscopy in the Near Infrared, Visible and UV
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Probing Optical Transitions in Porous Silicon by Reflectance Spectroscopy in the Near Infrared, Visible and UV
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *