Skip to main content Accessibility help
×
Home

Preparation and Electrical Properties of (Zr, Sn)TiO4 Dielectric Thin Films by Laser Ablation

Published online by Cambridge University Press:  15 February 2011


Osamu Nakagawara
Affiliation:
Murata Manufacturing Co., Ltd., 2–26–10 Tenjin, Nagaokakyo-shi, Kyoto 617, Japan
Hitoshi Tabata
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki-shi, Osaka 567, Japan
Yuji Toyota
Affiliation:
Murata Manufacturing Co., Ltd., 2–26–10 Tenjin, Nagaokakyo-shi, Kyoto 617, Japan
Masato Kobayashi
Affiliation:
Murata Manufacturing Co., Ltd., 2–26–10 Tenjin, Nagaokakyo-shi, Kyoto 617, Japan
Yukio Yoshino
Affiliation:
Murata Manufacturing Co., Ltd., 2–26–10 Tenjin, Nagaokakyo-shi, Kyoto 617, Japan
Yuzo Katayama
Affiliation:
Murata Manufacturing Co., Ltd., 2–26–10 Tenjin, Nagaokakyo-shi, Kyoto 617, Japan
Tomoji Kawai
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki-shi, Osaka 567, Japan

Abstract

(Zr, Sn)TiO4 is considered as a promising dielectric material for microwave devices owing to the temperature stability of capacitance and excellent microwave properties. Preferential (111)-oriented (ZrSn)TiO4 thin film was obtained by an ArF laser ablation. Properties of the crystallized film were as follows; the temperature coefficient of capacitance TCC was 17.6ppm/°C at 3MHz and the dielectric constant εr, 38 in the microwave range of 1GHz˜10GHz. It has turned out that the crystallization of this material is quite effective for improving dielectrical properties. Surface morphologies were observed by atomic force microscope(AFM). Grains grew on the crystallized film at 1 μm × 1 μm size.


Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Sakuma, T., Yamaguchi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl.Phys.Lett., 57, 2431 (1990).CrossRefGoogle Scholar
2. Takagi, H., Fujinami, N., Tamura, H., and Wakino, K., Jpn.J.Appl.Phys., 31, 3269 (1992).CrossRefGoogle Scholar
3. Sánchez, F., Varela, M., Queralt, X., Aguiar, R., and Morenza, J.L., Appl.Phys.Lett., 61, 2228 (1992).CrossRefGoogle Scholar
4. Bhattacharya, P., Komeda, T., Park, K., and Nishioka, Y., Jpn.J.Appl.Phys., 32, 4103 (1993).CrossRefGoogle Scholar
5. McHale, A.E. and Roth, R.S., J.Am.Ceram.Soc., 69, 827 (1986).CrossRefGoogle Scholar
6. Newnham, R.E., J. Am.Ceram.Soc., 50, 216 (1967).CrossRefGoogle Scholar
7. Wakino, K., Minai, K., and Tamura, H., J.Am.Ceram. Soc., 67, 278 (1984).CrossRefGoogle Scholar
8. Nakagawara, O., submitted to J. Appl. Phys.Google Scholar
9. Wang, D. and Oki, T., Hyomengijutu (in Japanese), 4 [8], 29 (1990).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-xsjvs Total loading time: 0.231 Render date: 2020-12-03T04:39:58.200Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 04:07:18 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation and Electrical Properties of (Zr, Sn)TiO4 Dielectric Thin Films by Laser Ablation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation and Electrical Properties of (Zr, Sn)TiO4 Dielectric Thin Films by Laser Ablation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation and Electrical Properties of (Zr, Sn)TiO4 Dielectric Thin Films by Laser Ablation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *