Skip to main content Accessibility help
×
Home

Power and Radio Frequency Inductors Using a Hybrid Ferrite-Flex Foil Technology

Published online by Cambridge University Press:  26 February 2011

Martin Gijs
Affiliation:
Martin.Gijs@epfl.ch, Ecole Polytechnique Fédérale de Lausanne, Institute of Microelectronics and Microsystems, BM 3.128, Station 17, Lausanne, 1015, Switzerland
Menouer Saidani
Affiliation:
m.saidani@icoflex.com, Ecole Polytechnique Fédérale de Lausanne, Institute of Microelectronics and Microsystems, Station 17, Lausanne, 1015, Switzerland
Corresponding
Get access

Abstract

We present a hybrid technology for the realization of three-dimensional miniaturized power inductors and RF inductors on silicon. The power inductors consist of planar Cu coils on polyimide substrates, and mm-size ferrite magnetic cores, obtained by three-dimensional micro-patterning of ferrite wafers using powder blasting. The coils are realized using an in-house developed high-resolution polyimide spinning and Cu electroplating process. Winding widths down to 5 μm have been obtained and total device volumes are ranging between 1.5 and 10 mm3. Inductive and resistive properties are characterized as a function of frequency; inductance values in the 100 μH range have been obtained. We also have realized millimetre-size RF inductors on silicon using the same polyimide mould - Cu electroplating coil technology. Subsequently the coils are assembled with magnetic cover plates of commercially available bulk Ni-Zn ferrites of high resistivity. Using the magnetic flux-amplifying ferrite plates, we obtain a 40 % enhancement of the inductance and a 25 % enhancement of the quality factor (Q=10-20) for frequencies up to 0.2 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Soohoo, R. F., IEEE Transactions on Magnetics 15 (6), 18031805 (1979).CrossRefGoogle Scholar
2. Kawabe, K., Koyama, H. and Shirae, K., IEEE Transactions on Magnetics 20 (5), 18041806 (1984).CrossRefGoogle Scholar
3. Oshiro, O., Tsujimoto, H. and Shirae, K., IEEE Transactions on Magnetics 23 (5), 37593761 (1987).CrossRefGoogle Scholar
4. Korenivski, V., Journal of Magnetism and Magnetic Materials 215, 800806 (2000).CrossRefGoogle Scholar
5. Park, J. Y. and Allen, M. G., A comparison of micromachined inductors with different magnetic core materials, in: IEEE Electronic Components and Technology Conference, pp. 375381 (1996).Google Scholar
6. Lochel, B. and Maciossek, A., Journal of the Electrochemical Society 143 (10), 33433348 (1996).CrossRefGoogle Scholar
7. Lochel, B., Maciossek, A., Quenzer, H. J. and Wagner, B., Journal of the Electrochemical Society 143 (1), 237244 (1996).CrossRefGoogle Scholar
8. Lochel, B., Maciossek, A., Rothe, M. and Windbracke, W., Sensors and Actuators a-Physical 54 (1–3), 663668 (1996).CrossRefGoogle Scholar
9. Maciossek, A., Lochel, B., Quenzer, H. J., Wagner, B., Schulze, S. and Noetzel, J., Microelectronic Engineering 27 (1–4), 503508 (1995).CrossRefGoogle Scholar
10. Mino, M., Yachi, T., Tago, A., Yanagisawa, K. and Sakakibara, K., IEEE Transactions on Magnetics 32 (2), 291296 (1996).CrossRefGoogle Scholar
11. Mino, M., Yachi, T., Tago, A., Yanagisawa, K. and Sakakibara, K., IEEE Transactions on Magnetics 28 (4), 19691973 (1992).CrossRefGoogle Scholar
12. Yamasawa, K., Maruyama, K., Hirohama, I. and Biringer, P. P., IEEE Transactions on Magnetics 26 (3), 12041209 (1990).CrossRefGoogle Scholar
13. Ben-Yaakov, S., The benefits of Planar Magnetics in HF Power Conversion, (Payton, Rishon- Le Zion, Israel).Google Scholar
14. Vanderlinde, D., Boon, C. A. M. and Klaassens, J. B., IEEE Transactions on Industrial Electronics 38 (2), 135141 (1991).CrossRefGoogle Scholar
15. Amalou, F., Bornand, E. L. and Gijs, M. A. M., IEEE Transactions on Magnetics 37 (4), 29993003 (2001).CrossRefGoogle Scholar
16. Belloy, E., Thurre, S., Walckiers, E., Sayah, A. and Gijs, M. A. M., Sensors and Actuators a-Physical 84 (3), 330337 (2000).CrossRefGoogle Scholar
17. Saidani, M. and Gijs, M. A. M., Journal of Microelectromechanical Systems 12 (2), 172178 (2003).CrossRefGoogle Scholar
18. Burghartz, J. N., Edelstein, D. C., Soyuer, M., Ainspan, H. A. and Jenkins, K. A., IEEE Journal of Solid-State Circuits 33 (12), 20282034 (1998).CrossRefGoogle Scholar
19. Taub, S. R. and Alterovitz, S. A., Microwaves & Rf 33 (10), 60–& (1994).Google Scholar
20. Larson, L. E., IEEE Journal of Solid-State Circuits 33 (3), 387399 (1998).CrossRefGoogle Scholar
21. Yamaguchi, M., Suezawa, K., Takahashi, Y., Arai, K. I., Kikuchi, S., Shimada, Y., Tanabe, S. and Ito, K., Journal of Magnetism and Magnetic Materials 215, 807810 (2000).CrossRefGoogle Scholar
22. Yamaguchi, M., Baba, M. and Arai, K. I., IEEE Transactions on Microwave Theory and Techniques 49 (12), 23312335 (2001).CrossRefGoogle Scholar
23. Yamaguchi, M., Baba, M., Suezawa, K., Moizumi, T., Arai, K. I., Haga, A., Shimada, Y., Tanabe, S. and Itoh, K., IEEE Transactions on Magnetics 36 (5), 34953498 (2000).CrossRefGoogle Scholar
24. Yamaguchi, M., Okuyama, H. and Arai, K. I., IEEE Transactions on Magnetics 31 (6), 42294231 (1995).CrossRefGoogle Scholar
25. Yamaguchi, M., Suezawa, K., Arai, K. I., Takahashi, Y., Kikuchi, S., Shimada, Y., Li, W. D., Tanabe, S. and Ito, K., Journal of Applied Physics 85 (11), 79197922 (1999).CrossRefGoogle Scholar
26. Suzuki, Y., vanDover, R. B., Gyorgy, E. M., Phillips, J. M., Korenivski, V., Werder, D. J., Chen, C. H., Felder, R. J., Cava, R. J., Krajewski, J. J. and Peck, W. F., Journal of Applied Physics 79 (8), 59235925 (1996).CrossRefGoogle Scholar
27. Saidani, M. and Gijs, M. A. M., Applied Physics Letters 84 (22), 44964498 (2004).CrossRefGoogle Scholar
28. Soft Ferrite and Accesories Catalogue, (http://www.ferroxcube.com, 2002).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-mhpm4 Total loading time: 0.817 Render date: 2021-01-15T19:19:47.252Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 19:00:41 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Power and Radio Frequency Inductors Using a Hybrid Ferrite-Flex Foil Technology
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Power and Radio Frequency Inductors Using a Hybrid Ferrite-Flex Foil Technology
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Power and Radio Frequency Inductors Using a Hybrid Ferrite-Flex Foil Technology
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *