Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-6zfdk Total loading time: 0.277 Render date: 2021-04-17T23:33:35.213Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Porous Silicon from Hydrogenated Amorphous Silicon: Comparison with Crystalline Porous Silicon

Published online by Cambridge University Press:  15 February 2011

J.-N. Chazalviel
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-école Polytechnique, 91128 Palaiseau-Cedex, France
R. B. Wehrspohn
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-école Polytechnique, 91128 Palaiseau-Cedex, France
I. Solomon
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-école Polytechnique, 91128 Palaiseau-Cedex, France
F. Ozanam
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-école Polytechnique, 91128 Palaiseau-Cedex, France
Get access

Abstract

Device-grade, boron-doped amorphous hydrogenated silicon can be made microporous by anodization in ethanoic HF. The thickness of the porous layer is limited by an instability due to the high resistivity of the material. Amorphous porous silicon exhibits strong room-temperature photoluminescence around 1.5 eV even in samples containing a high density of non-radiative recombination centers. This demonstrates the presence of a spatial confinement effect, as opposed to quantum confinement effect for crystalline porous silicon. The temperature dependence of the luminescence intensity is also accounted for on the same grounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1. See, e.g., Canham, L.T., Phys. Status Solidi (b) 190, 9 (1995) and references therein.CrossRefGoogle Scholar
2.Bustarret, E., Ligeon, M. and Ortega, L., Solid State Commun. 83, 461 (1992).CrossRefGoogle Scholar
3.Bustarret, E., Bruyère, J.-C., Muller, F. and Ligeon, M., MRS Symp. Proc. 283, 39 (1993).CrossRefGoogle Scholar
4.Bustarret, E., Ligeon, M. and Rosenbauer, M., Phys. Status Solidi (b) 190, 111 (1995).CrossRefGoogle Scholar
5.Jung, K.H., Shih, S., Kwong, D.L., Cho, C.C. and Gnade, B.E., Appl. Phys. Lett. 61, 2467 (1992).CrossRefGoogle Scholar
6.Yakimov, A.I., Stepina, N.P., Dvurechenskii, A.V. and Scherbakova, L.A., Physica B 205, 298 (1995).CrossRefGoogle Scholar
7.Estes, M.J., Hirsch, L.R., Wichart, S. and Moddel, G., MRS Spring Meeting 1996 (Symp. A).Google Scholar
8.Wehrspohn, R.B., Chazalviel, J.-N., Ozanam, F. and Solomon, I., EMRS Meeting (Strasbourg, June 1996) (to be published in Thin Solid Films).Google Scholar
9.Wehrspohn, R.B., Chazalviel, J.-N., Ozanam, F. and Solomon, I., Phys. Rev. Lett. 77, 1885 (1996).CrossRefGoogle Scholar
10.Street, R.A., Hydrogenated Amorphous Silicon (Cambridge Solid State Science Series, Cambridge, 1991) and references therein.CrossRefGoogle Scholar
11.Solomon, I., Benferhat, R. and Tran-Quoc, H., Phys. Rev. B 30, 3422 (1984).CrossRefGoogle Scholar
12.Swanepoel, R., J. Phys. E: Sci. Instrum. 16, 1214 (1983).CrossRefGoogle Scholar
13.Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35, 444 (1964).CrossRefGoogle Scholar
14.Lérondel, G., Romestain, R., Madéore, F. and Muller, F., Thin Solid Films 276, 80 (1996).CrossRefGoogle Scholar
15.Canham, L.T., private communication.Google Scholar
16.Ozanam, F., Chazalviel, J.-N. and Wehrspohn, R.B., EMRS Meeting (Strasbourg, June 1996) (to be published in Thin Solid Films).Google Scholar
17.Unagami, T. and Kato, K., Jpn. J. Appl. Phys. 16, 165 (1977).CrossRefGoogle Scholar
18.Mizuno, H., Koyama, H. and Koshida, N., Thin Solid Films (to be published).Google Scholar
19.Collins, R.W., Paesler, M.A. and Paul, W., Solid State Commun. 34, 833 (1980).CrossRefGoogle Scholar
20.Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983).CrossRefGoogle Scholar
21.Miyazaki, S. and Hirose, M., in Amorphous and Macrocrystalline Semiconductor Devices: Optoelectronic Devices, ed. by Kanicki, J. (Artech, Boston, 1991) chap. 5, pp. 180183.Google Scholar
22.Koehler, S.A. and Fritzsche, H., MRS Spring Meeting 1996 (Symp. A).Google Scholar
23.Allan, G., Delerue, C. and Lannoo, M., MRS Fall Meeting 1996 (Symp. Q).Google Scholar
24.Yonezawa, F. and Satoh, F., Phil. Mag. B 60, 109 (1989).CrossRefGoogle Scholar
25.Estes, M.J. and Moddel, G., Appl. Phys. Lett. 68, 1814 (1996).CrossRefGoogle Scholar
26.Yablonovitch, E., Aliara, D.L., Chang, C.C., Gmitter, T. and Bright, T.B., Phys. Rev. Lett. 57, 249 (1986).CrossRefGoogle Scholar
27.Wehrspohn, R.B. et al. (to be published).Google Scholar
28.Tessler, L.R. and Solomon, I., Phys. Rev. B 52, 10962 (1995).CrossRefGoogle Scholar
29. DLockwood, J., Lu, Z.H. and Baribeau, J.-M., Phys. Rev. Lett. 76, 539 (1996).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Porous Silicon from Hydrogenated Amorphous Silicon: Comparison with Crystalline Porous Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Porous Silicon from Hydrogenated Amorphous Silicon: Comparison with Crystalline Porous Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Porous Silicon from Hydrogenated Amorphous Silicon: Comparison with Crystalline Porous Silicon
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *