Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-16T00:18:01.989Z Has data issue: false hasContentIssue false

Polymerizable Complex Synthesis of Nanocomposite BaTi4/O9 Photo-Catalytic Materials

Published online by Cambridge University Press:  10 February 2011

Masato Kakihana*
Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226, Japan,
Get access


The “polymerizable complex (PC)” technique, a kind of gel technologies, is based on formation of a polyester resin precursor in which various metal ions can be uniformly distributed keeping their initial stoichiometric ratio. The approach allows for the synthesis of multicomponent oxides at reduced temperatures. Feasibility of the PC method is demonstrated for the synthesis of BaTi4O9 at 700–900 °C. BaTi4O9 was subsequently converted to nanocomposite materials by modifying its surface with ultrafine particles of RuO2, and they were used as photocatalysts for decomposition of water into H2 and O2 under irradiation of light from a high-pressure Hg lamp operated at 100 W. High-resolution transmission electron microscopic observations indicates uniform dispersion of spherical RuO2 particles of ∼2 nm in diameter on the host BaTi4O9 surface. The nanocomposite BaTiO9/RuO2 (1 wt % Ru relative to BaTi4O9) material prepared by the PC method at 800 “C showed a photo-catalytic activity ∼3 times higher than that of a material prepared by the conventional ceramic technique at 1100 °C.

Research Article
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Fujishima, A. and Honda, K., Nature, 37, 238 (1972).Google Scholar
2. Inoue, Y., Kubokawa, T. and Sato, K., J. Chem. Soc., Chem. Commun., 1298 (1990).Google Scholar
3. Inoue, Y., Kubokawa, T. and Sato, K., J. Phys. Chem., 95, 4095 (1991).Google Scholar
4. Inoue, Y., Niiyama, T., Asai, Y. and Sato, K., J. Chem. Soc., Chem. Commun., 579 (1992).Google Scholar
5. Inoue, Y., Asai, Y. and Sato, K., J. Chem. Soc., Faraday Trans., 90, 797 (1994).Google Scholar
6. Domen, K., Kudo, A., Shinozuka, A., Tanaka, A., Maruya, K. and Onishi, T., J. Chem. Soc., Chem. Commun., 356 (1986).Google Scholar
7. Domen, K., Kudo, A., Shibata, M., Tanaka, A., Maruya, K. and Onishi, T., J. Chem. Soc., Chem. Commun., 1706 (1986).Google Scholar
8. Kudo, A., Tanaka, A., Domen, K., Maruya, K., Aika, A. and Onishi, T., J. Catal. 111, 67 (1988).Google Scholar
9. Sayama, K., Tanaka, A., Domen, K., Maruya, K. and Onishi, T., Cat. Lett., 4, 217 (1990).Google Scholar
10. Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., Maruya, K. and Onishi, T., J. Catal., 120, 337 (1989).Google Scholar
11. Domen, K., Yoshimura, J., Sekine, T., Tanaka, A. and Onishi, T., Catal. Lett., 4, 339 (1990).Google Scholar
12. Domen, K., private communication.Google Scholar
13. Mhaisalkar, S. G., Lee, W. E. and Readey, D. W., J. Am. Ceram. Soc. 72, 2154 (1989).Google Scholar
14. O'Bryan, H. M. Jr, Thomson, J. Jr and Ploudre, J. K., J. Am. Ceram. Soc., 57, 450 (1974).Google Scholar
15. Lukaszewicz, K., Proc. Chem., 31, 1111 (1957).Google Scholar
16. Rase, D. E. and Roy, R., J. Am. Ceram. Soc., 38, 102 (1955).Google Scholar
17. Phule, P. P. and Risbud, S. H., Better Ceramics through Chemistry III, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R. [Mater. Res. Soc. Symp. Proc 121, 275 (1988).].Google Scholar
18. Ritter, J. J., Roth, R. S. and Blendell, J. E., J. Am. Ceram. Soc., 69, 155 (1986).Google Scholar
19. Pechini, M. P., U. S. Patent No. 3, 330, 697 (1967).Google Scholar
20. Kakihana, M., Arima, M., Sato, T., Yoshida, K., Yamashita, Y., Yashima, M. and Yoshimura, M., Appl. Phys. Lett., 69, 2053 (1996).Google Scholar
21. Kakihana, M., J. Sol-Gel Sci. Tech., 5, 7 (1996).Google Scholar
22. Anderson, H. U., Pennel, M. J. and Guha, J. P. in “Advances in Ceramics”: Ceramic Powder Science, Vol. 21, edited by Messing, G.L., Mazdiyasni, K.S., McCauley, J.W. and Harber, R.A., Amer. Ceram. Soc., Westerville, OH, p. 91 (1987).Google Scholar
23. Eror, N. G. and Anderson, H. U. in “Better Ceramics Through Chemistry II” edited by Brinker, C.J., Clark, D.E. and Ulrich, D.R., Mater. Res. Soc. Proc. 73, 571 (1986).Google Scholar
24. Lessing, P. A., Amer. Ceram. Soc Bull. 168, 1002 (1989).Google Scholar
25. Tai, L.W. and Lessing, P.A., J. Mater. Res. 7, 502 (1992).Google Scholar
26. Tai, L.W. and Lessing, P.A., J. Mater. Res. 7, 511 (1992).Google Scholar
27. Zhang, S.C., Messing, G.L., Huebner, W. and Coleman, M.M., J. Mater. Res. 5, 1806 (1990).Google Scholar
28. Livage, J., Henry, M. and Sanchez, C., Prog. Solid State Chem., 18, 259 (1988).Google Scholar
29. Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. Non-Cryst. Solids, 89, 206 (1987).Google Scholar
30. Sanchez, C., Livage, J., Henry, M. and Babonneau, F., J. Non-Cryst. Solids, 100, 65 (1988).Google Scholar
31. Kakihana, M., Arima, M., Yashima, M., Yoshimura, M., Nakamura, Y., Mazaki, H. and Yasuoka, H., in “Sol-Gel Science and Technology” edited by Pope, E. J. A., Sakka, S. and Klein, L. C., Ceramic transactions, Amer. Ceram. Soc., Westerville, OH, 55, 65 (1995).Google Scholar
32. Arima, M., Kakihana, M., Nakamura, Y., Yashima, M. and Yoshimura, M., J. Am. Ceram. Soc. 78 (1996) in press.Google Scholar