Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.48 Render date: 2021-03-03T14:48:48.794Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Poly(ethynyl-p-xylylene), An Advanced Molecular Caulk CVD Polymer

Published online by Cambridge University Press:  01 February 2011

Brad P. Carrow
Affiliation:
Brewer Science Inc., 2401 Brewer Drive, Rolla, MO 65401 USA jsenkevich@brewerscience.com
Rex E. Murray
Affiliation:
Brewer Science Inc., 2401 Brewer Drive, Rolla, MO 65401 USA jsenkevich@brewerscience.com
Benjamin W. Woods
Affiliation:
Brewer Science Inc., 2401 Brewer Drive, Rolla, MO 65401 USA jsenkevich@brewerscience.com
Jay J. Senkevich
Affiliation:
Brewer Science Inc., 2401 Brewer Drive, Rolla, MO 65401 USA jsenkevich@brewerscience.com
Corresponding
Get access

Abstract

Poly(p-xylylene) (also known as parylene N) has previously been used to pore seal ultralow k (≤ 2.2) (ULK) dielectrics. The parylene polymers may facilitate the integration of ULK dielectrics by: substantially improving their fracture toughness, hermetically sealing the pores, being able to use standard wet chemical cleans, and minimally impacting the observed dielectric constant, while minimally disrupting current process flow integrations. This paper introduces a new cross-linkable polymer that is deposited using thermal chemical vapor deposition (CVD) on the same tool that is used for parylene N deposition. The polymer, poly(ethynyl-p-xylylene) (parylene X), was deposited at room temperature. A series of 30 min post-deposition anneals in helium shows that the deposited material cross-linked between 200°C and 300°C with full conversion at 380°C for a ~300 A film. After the low molecular weight species out-gassed during anneals at 200°C, there was less than a percent weight loss to 450°C with no change in the optical constants and no optical loss. Previous work with poly(ethyl-p-xylylene) suggests that the dielectric constant of parylene X will be significantly lower than parylene N.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Maidenberg, D., Volksen, W., Miller, R., and Dauskardt, R. H., Nature Materials, 3, 464–9 (2004).CrossRefGoogle Scholar
2. Xie, B. ad Muscat, A.J., Proc. — Electrochem. Soc. 2003-26, no. Cleaning Technology in Semiconductor Device Manufacturing VIII, 279288 (2004).Google Scholar
3. Hua, X., Stolz, C., Oehrlein, G.S., Lazzeri, P., Coghe, N., Anderle, M., Inoki, C.K., Kuan, T.S., Jiang, P., J. Vac. Sci. Technol, A, 23, 151164 (2005).CrossRefGoogle Scholar
4. Jezewski, C., Lanford, W.A., Senkevich, J.J., Wiegand, C. J., Mallikarjunan, A., Lu, D., Wang, G.C., Lu, T.M., Jin, C., J. Electrochem. Soc., 151(7) F157161 (2004).CrossRefGoogle Scholar
5. Bae, D.L., Jezewski, C., Cale, T.S. and Senkevich, J.J., In Press Chem. Vapor DepGoogle Scholar
6. Gorham, W.F., J. Polym. Sci: Part A-1 4, 3027–39 (1966).CrossRefGoogle Scholar
7. Xu, C. and Baum, T.H., Mat. Res. Soc. Symp. Proc. 555, 155160 (1999).CrossRefGoogle Scholar
8. Senkevich, J.J., Desu, S.B., Chem. Mat. 11(7), 1814–21 (1999).CrossRefGoogle Scholar
9. Senkevich, J.J., Mallikarjunan, A., Wiegand, C.J., Lu, T.M., Bani-Salameh, H.N., and Lichti, R.L., Electrochem. Solid-State Lett. 7(4) G5658 (2004).CrossRefGoogle Scholar
10. Senkevich, J.J., Chem. Vap. Deposition 5(6), 257–60 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
11. Senkevich, J.J., Yang, G.R., and Lu, T.M., Colloids and Surfaces A 216 167173 (2003).CrossRefGoogle Scholar
12. Beach, W.F., Lee, C., Bassett, D.R., Austin, T.M., and Olson, R., Encycl. Polym. Sci. Eng. 17, 9901025, Wiley, New York (1989).Google Scholar
13. Senkevich, J.J., Mitchell, C.J., Vijayaraghavan, A., Barnat, E.V., McDonald, J.F., Lu, T.M., J. Vac. Sci. & Tech. A 20(4) 1445–9 (2002).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Poly(ethynyl-p-xylylene), An Advanced Molecular Caulk CVD Polymer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Poly(ethynyl-p-xylylene), An Advanced Molecular Caulk CVD Polymer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Poly(ethynyl-p-xylylene), An Advanced Molecular Caulk CVD Polymer
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *