Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-26T10:46:34.953Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Photoluminescence Properties of Mn-doped Zinc Silicates Synthesized by Combinatorial Sputtering Technique

Published online by Cambridge University Press:  26 February 2011

Lih-Ping Wang
Affiliation:
iriswang@itri.org.tw, ITRI-URL, Rm.141 bldg. 67, 195 sect.Chuhsin Rd., Chutunhg, Hsicnchu, N/A, N/A, Taiwan
Wen-Hsuan Chao
Affiliation:
whchao@itri.org.tw, ITRI-UCL, Taiwan
Shu-Huei Wang
Affiliation:
sandywang@itri.org.tw, ITRI-UCL, Taiwan
Tien-Heng Huang
Affiliation:
Tomhuang@itri.org.tw, ITRI-UCL, Taiwan
Ren-Jye Wu
Affiliation:
rjwu@itri.org.tw, ITRI-UCL, Taiwan
Get access

Abstract

The photoluminescence (PL) properties of Mn-doped zinc silicates were studied by combinatorial synthesis and characterization technique associated with various process parameters. The material libraries were prepared with composition spreading in Zn and Mn concentration. The PL emission was green or orange, and depended strongly on the stoichiometry of the zinc silicates and the annealing temperature. The orange emission was observed in Mn-doped zinc silicates annealed at 800°C, which attributed to the increase of crystal field in a highly non-stoichiometric α-Zn2SiO phase ((Zn+Mn)/Si <1).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morell, A. and Khiati, N. El, J. Electrochem. Soc. 140, 2019X 2021 (1993).CrossRefGoogle Scholar
2. Robbins, D.J., Caswell, N.S., Avouris, P., Giess, E.A., Chang, I.F., and Dove, D.B., J. Electrochem. Soc. 132, 2784X 2793(1985).CrossRefGoogle Scholar
3. Chang, I.F., Brownlow, J.W., Sun, T.I., and Wilson, J.S., J. Electrochem. Soc. 136, 3532X 3535 (1989).Google Scholar
4. Thilulouse, P., Giess, E.A., and Chang, I.F., J. Appl. Phys. 53, 9015X 9020 (1982).Google Scholar
5. Barthou, C., Benoit, J., Pnalloulj, P., and Morell, A., J. Electrochem. Soc. 141, 524X 529 (1994).CrossRefGoogle Scholar
6. Kamiya, S. and Mizuno, H. in Phosphor Handbook, edited by Shionoya, S. and Yen, W.M., p.410 (CRC Press, 1998).Google Scholar
7. Blasse, G. and Grabmaier, B.C., Luminescent Materials (Springer-Verlag, 1994), p52.CrossRefGoogle Scholar
8. Leverenz, H.W. and Seitz, F., J. Appl. Phys. 10, 479493 (1939).CrossRefGoogle Scholar
9. Rooksby, H.P. and McKeag, A.H., Trans. Faraday Soc. 37, 308311 (1941).CrossRefGoogle Scholar
10. Taghavinia, N., Lerondel, G., Makino, H., Yamamoto, A., Yao, T., Kawazoe, Y. and Goto, T., J. Gryst. Growth 237, 869873 (2002).CrossRefGoogle Scholar
11. Li, B., Zhou, J., Zong, R., Li, L. and Li, Q., Proc. 3rd China Intl. Conf. High-Performance Ceramics (CICC-3) (Shenzhen, China, May 9-12, 2004 ), 1986.Google Scholar
12. in High Performance Ceramic Conference (Mainland China, 2004).Google Scholar
13. Sun, X.-D., Gao, C., Wang, J., and Xiang, X.-D., Appl. Phys. Lett. 70, 3553 (1997).Google Scholar
14. Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.C., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H., Wu, X.D., Science 279, 837839, 1998.CrossRefGoogle Scholar
15. Mordkovish, V.Z., Jin, Z., Yamada, Y., Fukumura, T., Kawasaki, M., Koinuma, H., Solid Stat. Science 4, 779782 (2002).CrossRefGoogle Scholar
16. Lee, S. and Seo, S.Y., J. Electrochem. Soc. 149, J85X J88 (2002).Google Scholar
17. Sohn, K.-S.. Seo, S.Y., Park, H.D., Electrochem. Sol. Stat. Lett. 4(10), H26–H29 (2001).CrossRefGoogle Scholar