Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-09T16:28:49.234Z Has data issue: false hasContentIssue false

Photocatalytic Segmented Nanowires and Single-step Iron Oxide Nanotube Synthesis: Templated Electrodeposition as all-round Tool

Published online by Cambridge University Press:  31 January 2011

Michiel G. Maas
Affiliation:
m.g.maas@utwente.nlmaasmichiel@yahoo.com, University of Twente, Enschede, Netherlands
Eddy J.B. Rodijk
Affiliation:
e.j.b.rodijk@utwente.nl, University of Twente, Enschede, Netherlands
Wouter Maijenburg
Affiliation:
a.w.maijenburg@utwente.nl, University of Twente, Enschede, Netherlands
Johan E ten Elshof
Affiliation:
j.e.tenelshof@utwente.nl, University of Twente, Enschede, Netherlands
Dave H.A. Blank
Affiliation:
d.h.a.blank@utwente.nl, University of Twente, Enschede, Netherlands
Get access

Abstract

Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was observed that gas production increased during irradiation. Iron oxide nanotubes were synthesized via a gel synthesis route, avoiding clogging of the membrane pores during growth. The nanotubes formed without thermal after-treatment. Transmission electron microscopy (TEM) analysis and selected area electron diffraction (SAED) revealed a completely amorphous iron oxide structure. By demonstrating the synthesis of photocatalytically active segmented nanowire and nanotubes without post-treatment steps, templated electrodeposition can be a versatile and low cost tool for nanowires with designed functionality or fast nanotube synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Heo, Y.W., Norton, D.P., Tien, L.C., Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J., LaRoche, J.R., Mat. Sci. Eng. R, 47, 1 (2004).Google Scholar
2 Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., Yang, P., Nano Lett. 5 (9), 1633 (2005).Google Scholar
3 Patolsky, F., Zheng, G., Lieber, C.M., Anal. Chem. 78 (13), 4260 (2006).Google Scholar
4 Keating, C.D., Natan, M.J., Adv. Mater. 15 (5), 451 (2003).Google Scholar
5 Bauer, L.A., Reich, D.H., Meyer, G.J., Langmuir 19, 7043 (2003).Google Scholar
6 Wang, J., J. Mater. Chem. 18, 4017 (2008).Google Scholar
7 Paxton, W.F., Sundararajan, S., Mallouk, T.E., Sen, A., Angew. Chem. Int. Ed. 45, 5420 (2006).Google Scholar
8 Wang, Y., Hernandez, R.M., Bartlett, D.J., Bingham, J.M., Kline, T.R., Sen, A., Mallouk, T.E., Langmuir 22 (25), 10451 (2006).Google Scholar
9 Wang, J., ACS Nano 3 (1), 4 (2009).Google Scholar
10 Fujishima, A., Honda, K., Nature 238, 37 (1972).Google Scholar
11 Fujishima, A., Kohayakawa, K., Honda, K., J. Electrochem. Soc. 122, 1487 (1975).Google Scholar
12 Nowotny, J., Bak, T., Nowotny, M.K., Sheppard, L.R., Int. J. Hydrogen Energ. 32, 2609 (2007).Google Scholar
13 Dannetun, H., Lundstroem, I., Petersson, L.G., J. Appl. Phys. 70, 453 (1991).Google Scholar
14 Lin, W.G., Yang, W.D., Huang, I.L., Energ. Fuel. 23, 2192 (2009).Google Scholar
15 Bort, H., Juettner, K., Lorenz, W.J., Staikov, G., Budevski, E., Electrochim. Acta 28 (7), 985 (1983).Google Scholar
16 Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6 (2), 238 (2006).Google Scholar
17 Therese, G.H.A., Kamath, P.V., Chem. Mater. 12 (5), 1195 (2000).Google Scholar