Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bcmtx Total loading time: 0.312 Render date: 2021-04-16T03:57:13.882Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Patterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly

Published online by Cambridge University Press:  01 February 2011

Vinod. K. Sangwan
Affiliation:
vinod_sag@yahoo.co.uk, University of Maryland (College Park), Department of Physics, 8309, 20th Avenue, Adelphi, MD, 20783, United States
D. R. Hines
Affiliation:
hines@lps.umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
V. W. Ballarotto
Affiliation:
vince@lps.umd.edu, Laboratory for Physical Sciences, College Park, MD, 20740, United States
G. Esen
Affiliation:
gokhan@umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
M. S. Fuhrer
Affiliation:
mfuhrer@physics.umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
E. D. Williams
Affiliation:
edw@physics.umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
Get access

Abstract

Conditions for the transfer printing of patterned carbon nanotube (CNT) films, along with a Au-gate, a poly methylmethacrylate (PMMA) dielectric layer and Au source-drain electrodes have been developed for the fabrication of thin-film transistors on a polyethylene terephthalate (PET) substrate. Chemical vapor deposition (CVD) grown CNTs were patterned using a photolithographic method.

Transfer printing was used to fabricate devices having both top gate and bottom gate configurations. Replacement of the SiO2 dielectric with PMMA correlates with a decreased hysteresis in the transconductance behavior. Encapsulation of the CNTs between the polymeric substrate and dielectric layer yields ambipolar behavior. Variations in device performance are also observed as a function of CNT film density and channel length, suggesting changing contributions of the metallic and semiconducting CNTs to the transport mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
2 Bethune, D. S., Kiang, C. S., Varies, M. S. d., Gorman, G., Savoy, R., Vazquez, J. and Beyer, R., Nature 363, 605 (1993).CrossRefGoogle Scholar
3 Li, S., Yu, Z., Yen, S.F., Tang, W. C. and Burke, P. J., Nano Lett. 4, 753 (2004).CrossRefGoogle Scholar
4 Keren, K., Berman, R. S., Bushctab, E., Sivan, U. and Braun, E., Science 303, 1380 (2003).CrossRefGoogle Scholar
5 Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S. and Cho, K. J., Nano Lett. 3, 347 (2003).CrossRefGoogle Scholar
6 Lin, Y., Lu, F., Tu, Y. and Ren, Z., Nano Lett. 4, 191 (2004).10.1021/nl0347233CrossRefGoogle Scholar
7 Durkop, T., Grtty, S. A., Cobas, E. and Fuhrer, M. S., Nano Lett. 4, 35 (2004).CrossRefGoogle Scholar
8 Chen, Z., Appenzeller, J., Lin, M. Y., Oakley, J. S., Rinzler, A. G., Tang, J., Wind, S. J., Solomon, P. M. and Avouris, P., Science 311, 1735 (2006).CrossRefGoogle Scholar
9 Hafner, J. H., Cheung, C.-L., Osterkamp, T. H. and Lieber, C. M., J. Phys. Chem. B 4, 743 (2001).CrossRefGoogle Scholar
10 Ming, X., Huang, H., Caldwell, R., Huang, L., Jun, S. C., Huang, M., Sfeir, M. Y., O'Brien, S. and Hone, J., Nano Lett. 5, 1515 (2005).CrossRefGoogle Scholar
11 Rao, S. G., Huang, L., Setyawan, W. and Hong, N. S., Nature 425, 36 (2003).CrossRefGoogle Scholar
12 Lee, S. W., Lee, D. S., Yu, H. Y., Campbell, E. E. B. and Park, Y. W., Appl. Phys. A 78, 283 (2004).CrossRefGoogle Scholar
13 Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
14 Snow, E. S., Novak, J. P., Campbell, P. M. and Park, D., Appl. Phys. Lett. 82, 2145 (2003).CrossRefGoogle Scholar
15 Tselev, A., Hatton, K., Fuhrer, M. S., Paaranjape, M. and Barbara, P., Nanotechnology 15, 1475 (2004).CrossRefGoogle Scholar
16 Hines, D. R., Mezhenny, S., Breban, M., Williams, E. D., Ballarotto, V. W., Esen, G., Southard, A. and Fuhrer, M. S., Appl. Phys. Lett. 86, 163101 (2005).CrossRefGoogle Scholar
17 Hur, S.-H., Kocabas, C., Gaur, A., Park, O. O., Shim, M. and Rogers, J. A., J. Appl. Phys. 98, 114302 (2005).CrossRefGoogle Scholar
18 Bradley, K., Gabriel, J.-C. P. and Gruner, G., Nano Lett. 3, 1353 (2003).CrossRefGoogle Scholar
19 Hur, S.-H., Park, O. O. and Rogers, J. A., Appl. Phys. Lett. 86, 243502 (2005).CrossRefGoogle Scholar
20 Gamota, D. R., Brazis, P., Kalyanasundaram, K. and Zhang, J., (Kluwer Academic Publishers, Boston, 2004).Google Scholar
21 Hines, D. R., Ballarotto, V. W., Williams, E. D., Shao, Y. and Solin, S. A., J. Appl. Phys.; in press (2007).Google Scholar
22 Kim, W., Choi, H.-C., Shim, M., Li, Y., Wang, D. and Dai, H., Nano Lett. 2, 703 (2002).CrossRefGoogle Scholar
23 Fuhrer, M. S., Kim, B. M., Dürkop, T. and Brintlinger, T., Nano Lett. 2, 755 (2002).CrossRefGoogle Scholar
24 Chen, Y.-F. and Fuhrer, M. S., Nano Lett. 6, 2158 (2006).CrossRefGoogle Scholar
25 Kumar, S., Murthy, J. Y. and Alam, M. A., Physical Review Letters 95, 066802 (2005).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Patterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Patterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Patterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *