Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T07:14:40.964Z Has data issue: false hasContentIssue false

Oxidation Kinetics and Microstructure of Wet-Oxidized MBE-Grown Short-Period AlGaAs Superlattices

Published online by Cambridge University Press:  21 March 2011

René Todt
Affiliation:
Currently Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
Katharine Dovidenko
Affiliation:
UAlbany Institute for Materials, University at Albany-SUNY, Albany, NY 12203, U.S.A.
Alexei Katsnelson
Affiliation:
UAlbany Institute for Materials, University at Albany-SUNY, Albany, NY 12203, U.S.A.
Vadim Tokranov
Affiliation:
UAlbany Institute for Materials, University at Albany-SUNY, Albany, NY 12203, U.S.A.
Michael Yakimov
Affiliation:
UAlbany Institute for Materials, University at Albany-SUNY, Albany, NY 12203, U.S.A.
Serge Oktyabrsky
Affiliation:
UAlbany Institute for Materials, University at Albany-SUNY, Albany, NY 12203, U.S.A.
Get access

Abstract

The kinetics of the wet oxidation process of MBE-grown high-Al-content AlAs/Al0.6Ga0.4As short-period superlattices (SPSLs) was investigated and compared to AlGaAs alloys and pure AlAs. We found that alloys and superlattices (SLs) have different oxidation characteristics. These differences were attributed to traces of the superlattice structure in the oxidized material. The microstructure and chemistry of SPSLs with an equivalent composition of Al0.98Ga0.02As was studied, using transmission electron microscopy, energy-dispersive x-ray spectroscopy, Rutherford backscattering, and nuclear reaction analysis for hydrogen-profiling. We also report on the mechanical stability of oxidized SPSL layers in optoelectronic device structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, E. I., Holonyak, N. Jr., and Maranowski, S. A., Appl. Phys. Lett., 66, 2688 (1995).Google Scholar
2. Kish, F. A., Caracci, S. J., et al., Appl. Phys. Lett., 59, 1755 (1991).Google Scholar
3. Huffaker, D. L., Deppe, D. G., et al., Appl. Phys. Lett., 65, 97 (1994).Google Scholar
4. Coldren, L. A., Hegblom, E., et al., SPIE Proc., 3003, 2 (1997).Google Scholar
5. Choquette, K. D., Geib, K. M., et al., Appl. Phys. Lett., 69, 1385 (1996).Google Scholar
6. Pickrell, G. W., Epple, J. H., et al., Appl. Phys. Lett., 76, 2544 (2000).Google Scholar
7. Dallesasse, J. M., Holonyak, N., Jr., et al., Appl. Phys. Lett., 57, 2844 (1990).Google Scholar
8. Deal, B. E., and Grove, A. S., J. Appl. Phys., 36, 3770 (1965).Google Scholar
9. Geib, K. M., Choquette, K. D., et al., SPIE Proc., 3003, 69 (1997).Google Scholar
10. Twesten, R. D., Follstaedt, D. M., and Choquette, K. D., SPIE Proc., 3003, 55 (1997)Google Scholar