Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.422 Render date: 2021-03-05T17:46:52.418Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Organometallic Synthesis and Spectroscopic Characterization of Manganese Doped CdSe Nanocrystals

Published online by Cambridge University Press:  21 March 2011

Frederic V. Mikulec
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Masaru Kuno
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Marina Bennati
Affiliation:
Center for Magnetic Resonance, Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Dennis A. Hall
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139 Center for Magnetic Resonance, Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Robert G. Griffin
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139 Center for Magnetic Resonance, Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Moungi G. Bawendi
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

For CdSe quantum dots (QDs) produced via high temperature pyrolysis in trioctylphosphine oxide (TOPO), a MnSe precursor such as Mn2(μ-SeMe)2(CO)8appears to be necessary to successfully incorporate low levels of Mn. A simple etching experiment and electron paramagnetic resonance (EPR) measurements reveal that most of the dopant atoms reside in the surface layers of the inorganic lattice. The dopant dramatically affects 113Cd solid state NMR spectra; the observed paramagnetic shift and decreased longitudinal relaxation time reproduce bulk material behavior. Paramagnetic atoms in QDs generate large effective magnetic fields, which implies that magneto-optical experiments can be performed simply by doping. Results from fluorescence line narrowing (FLN) studies on Mn doped CdSe QDs mirror previous findings on undoped QDs in an external magnetic field. Experimental fitting of photoluminescence excitation (PLE) spectra of doped QDs reveals that the effective absorption lineshape contains a new feature which is believed to be a previously unobserved – but theoretically predicted – optically dark fine structure state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Furdyna, J. K. J. Appl. Phys. 1988, 64, R29–R64.CrossRefGoogle Scholar
2. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 1322613239.CrossRefGoogle Scholar
3. (a) Wang, Y.; Herron, N.; Moller, K.; Bein, T. Solid State Commun. 1991, 77, 3338. (b) Dhingra, S.; Kim, K.-W.; Kanatzidis, M. G. Mat. Res. Soc. Symp. Proc. 1991, 204, 163-168. (c) Kim, K.-W.; Cowen, J. A.; Dhingra, S.; Kanatzidis, M. G. Mat. Res. Soc. Symp. Proc. 1992, 272, 27-33. (d) Yanata, K.; Suzuki, K.; Oka, Y. J. Appl. Phys. 1993, 73, 4595-4598. (e) Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416-419. (f) Yanata, K.; Oka, Y. Jpn. J. Appl. Phys. 1995, Suppl 34-1, 164-166. (g) Bandaranayake, R. J.; Smith, M.; Lin, J. Y.; Jiang, H. X.; Sorensen, C. M. IEEE Trans. Magnetics 1994, 30, 4930-4932. (h) Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. J. Phys. Chem. 1996, 100, 45514555. (i) Levy, L.; Hochepied, J. F.; Pileni, M. P. J. Phys. Chem. 1996, 100, 18322-18326. (j) Counio, G.; Esnouf, S.; Gacoin, T.; Boilot, J.-P. J. Phys. Chem. 1996, 100, 20021-20026. (k) Levy, L.; Feltin, N.; Ingert, D.; Pileni, M. P. J. Phys. Chem. B 1997, 101, 9153-9160.CrossRefGoogle Scholar
4. Ladizhansky, V.; Hodes, G.; Vega, S. J. Phys. Chem. B 1998, 102, 85058509.CrossRefGoogle Scholar
5. Coleman, A. P.; Dickson, R. S.; Deacon, G. B.; Fallon, G. D.; Ke, M.; McGregor, K.; West, B. O. Polyhedron 1994, 13, 12771290.CrossRefGoogle Scholar
6. Welcman, N.; Rot, I. J. Chem. Soc. 1965, 75157516.CrossRefGoogle Scholar
7. (a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 87068715. (b) Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997, 106, 9869-9882.CrossRefGoogle Scholar
8. Ludwig, G. W.; Woodbury, H. H. in Solid State Physics, vol. 13, edited by Seitz, F.; Turnbull, D.; Academic Press: New York, 1962; p 297.Google Scholar
9. Kennedy, T. A.; Glasser, E. R.; Klein, P. B.; Bhargava, R. N. Phys. Rev. B 1995, 52, R14356–R14359.CrossRefGoogle Scholar
10. Gavish, M.; Vega, S.; Zamir, D. Phys. Rev. B 1993, 48, 21912199.CrossRefGoogle Scholar
11. Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Phys. Rev. Lett. 1995, 75, 37283731.CrossRefGoogle Scholar
12. (a) Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Phys. Rev. B 1996, 53, 1634716354. (b) Kuno, M. Ph.D. Thesis, Massachusetts Institute of Technology, 1998, pp 229-246.CrossRefGoogle Scholar
13. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802804.CrossRefGoogle Scholar
14. Empedocles, S. A.; Norris, D. J.; Bawendi, M. G. Phys. Rev. Lett. 1996, 77, 38733876.CrossRefGoogle Scholar
15. Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Phys. Rev. B 1996, 54, 48434856.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Organometallic Synthesis and Spectroscopic Characterization of Manganese Doped CdSe Nanocrystals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Organometallic Synthesis and Spectroscopic Characterization of Manganese Doped CdSe Nanocrystals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Organometallic Synthesis and Spectroscopic Characterization of Manganese Doped CdSe Nanocrystals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *