Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-6jfzc Total loading time: 0.329 Render date: 2022-10-06T18:13:32.253Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Organic Light Emitting Devices Fabricated from Semiconducting Nanospheres

Published online by Cambridge University Press:  11 February 2011

Thomas Piok
Affiliation:
Christian Doppler Laboratory Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria. Christian Doppler Laboratory Advanced Functional Materials, Institute of Nanostructured Materials and Photonics, Franz-Pichler-Strasse 30, A-8160 Weiz, Austria.
Franz P. Wenzl
Affiliation:
Christian Doppler Laboratory Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria.
Stefan Gamerith
Affiliation:
Christian Doppler Laboratory Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria. Christian Doppler Laboratory Advanced Functional Materials, Institute of Nanostructured Materials and Photonics, Franz-Pichler-Strasse 30, A-8160 Weiz, Austria.
Christoph Gadermaier
Affiliation:
Christian Doppler Laboratory Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria. Christian Doppler Laboratory Advanced Functional Materials, Institute of Nanostructured Materials and Photonics, Franz-Pichler-Strasse 30, A-8160 Weiz, Austria.
Satish Patil
Affiliation:
Department of Chemistry, BUGH Wuppertal, Gauss-Str. 20 D-42097 Wuppertal, Germany.
Rivelino Montenegro
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424 Potsdam, Germany.
Thomas Kietzke
Affiliation:
Institute of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany
Dieter Neher
Affiliation:
Institute of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany
Ullrich Scherf
Affiliation:
Department of Chemistry, BUGH Wuppertal, Gauss-Str. 20 D-42097 Wuppertal, Germany.
Katharina Landfester
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424 Potsdam, Germany.
Emil J.W. List
Affiliation:
Christian Doppler Laboratory Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria. Christian Doppler Laboratory Advanced Functional Materials, Institute of Nanostructured Materials and Photonics, Franz-Pichler-Strasse 30, A-8160 Weiz, Austria.
Get access

Abstract

Organic light emitting diodes (OLEDs) have been fabricated from organic semiconducting polymer nanospheres (SPNs) which have been deposited from aqueous dispersions. The active layer of the devices consists of a single, homogeneous layer of light emitting SPNs, as verified by optical, interferometric and surface probe measurements. Different batches of SPNs with different SPN diameters have been tested (69nm, 95nm, 126nm and 150 nm). All SPN-based OLEDs exhibit a light emission onset corresponding to the SPN energy gap (ca. 2.7 eV for m-LPPP, a semiconducting para-phenylene ladder polymer). The low onset is attributed to field enhanced injection of charge carriers at the aluminum cathode due to the formation of stalactite-type nanostructures. A detailed comparison of the SPN-based and bulk semiconducting polymer films reveals no differences in the basic optoelectronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCES

Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M., Salaneck, W. R., Nature 397, 121 (1999).CrossRefGoogle Scholar
Pei, Q., Yu, G., Zhang, C., Yang, Y. and Heeger, A. J., Science 269, 1086 (1995).CrossRefGoogle Scholar
Sariciftci, N. S., Smilowitz, L., Heeger, A. J., Wudl, F., Science 258, 1474 (1992).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., Heeger, A., Science 270, 1789 (1995).CrossRefGoogle Scholar
Stagira, S., Zavelani-Rossi, M., Nisoli, M., DeSilvestri, S., Lanzani, G., Zenz, C., Mataloni, P., Leising, G., Appl. Phys. Lett. 73, 2860 (1998).CrossRefGoogle Scholar
6. Garnier, F., Hajlaoui, R., Yassar, A., Srivastava, P., Science 265, 1684 (1994).CrossRefGoogle Scholar
7. Ho, P. K. H., Thomas, D. S., Friend, R. H., Tessler, N., Science 285, 233 (1999).CrossRefGoogle Scholar
8. Landfester, K., Montenegro, R., Scherf, U., Güntner, R., Asawapirom, U., Patil, S., Neher, D., Kietzke, T., Adv. Mater. 14, 651 (2002).3.0.CO;2-V>CrossRefGoogle Scholar
9. Landfester, K., Macromol. Rapid Comm. 22, 896 (2001).3.0.CO;2-R>CrossRefGoogle Scholar
10. Landfester, K., Adv. Mater. 13, 765 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
11. Chang, W.-P., Whang, W.-T., Polymer 37, 4229 (1996)CrossRefGoogle Scholar
12. Cheng, Z., Russel, W. B., Chaikin, P. M., Nature 401, 893 (1999).CrossRefGoogle Scholar
13. Scherf, U., Müllen, K., Makromol. Chem. Rapid Commun. 12, 489 (1991).CrossRefGoogle Scholar
14. Bliznyuk, V., Ruhstaller, B., Brock, P. J., Scherf, U., Carter, S. A., Adv. Mater. 11, 1257 (1999).3.0.CO;2-D>CrossRefGoogle Scholar
15. Yan, M., Rothberg, L. J., Papadimitrakopoulos, F., Galvin, M. E., Miller, T. M., Phys. Rev. Lett. 73, 744 (1994).CrossRefGoogle Scholar
16. List, E. J. W., Kim, C. H., Shinar, J., Pogantsch, A., Leising, G., Graupner, W., Appl. Phys. Lett. 76, 2083 (2000).CrossRefGoogle Scholar
17. Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers, (2nd ed. (Oxford University Press, NY, 1999).Google Scholar
18. Tasch, S., Kranzelbinder, G., Leising, G., Scherf, U., Phys. Rev. B. 55, 5079 (1997).CrossRefGoogle Scholar
19. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, (Plenum Press, New York, 1983)CrossRefGoogle Scholar
20. List, E.J.W., Creely, C., Leising, G., Schulte, N., Schlüter, A.D., Scherf, U., Müllen, K., Graupner, W., Chem Phys Lett. 325, 132 (2000).CrossRefGoogle Scholar
21. List, E. J. W., Guentner, R., Scandiucci de Freitas, P., Scherf, U., Adv. Mater. 14, 374 (2002).3.0.CO;2-U>CrossRefGoogle Scholar
22. Piok, T., Wenzl, F.P., Scherf, U., Landfester, K. and List, E.J.W. (unpublished results).Google Scholar
23. Deckman, H.W., Dunsmuir, J.H., Appl. Phys. Lett. 41, 377 (1982).CrossRefGoogle Scholar
24. For no particular reason SPN with a diameter of ca. 94 nm for m-LPPP and 74 nm for PF11112 have been used for the preparation of the OLEDs.Google Scholar
25. Tasch, S., Niko, A., Leising, G., Scherf, U., Appl. Phys. Lett. 68, 1090 (1996).CrossRefGoogle Scholar
26. deMello, J. C., Tessler, N., Graham, S. C., Friend, R. H., Phys. Rev. B 57, 12951, (1998)CrossRefGoogle Scholar
27. Yang, Y., Westerweele, E., Zhang, C., Smith, P., Heeger, A.J., J. Appl. Phys. 77, 694 (1995).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Organic Light Emitting Devices Fabricated from Semiconducting Nanospheres
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Organic Light Emitting Devices Fabricated from Semiconducting Nanospheres
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Organic Light Emitting Devices Fabricated from Semiconducting Nanospheres
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *