Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.572 Render date: 2021-02-25T18:02:19.443Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Optical Properties of Mn-doped GaN

Published online by Cambridge University Press:  01 February 2011

O. Gelhausen
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, NSW 2007, Australia
E. Malguth
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, NSW 2007, Australia Institute for Solid-State-Physics, Technical University Berlin, 10623 Berlin, Germany
M. R. Phillips
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, NSW 2007, Australia
E. M. Goldys
Affiliation:
Division of Information and Communication Sciences, Macquarie University, North Ryde, NSW 2109, Australia
M. Strassburg
Affiliation:
Institute for Solid-State-Physics, Technical University Berlin, 10623 Berlin, Germany Department of Physics and Astronomy, Georgia State University, Atlanta, GA-30303, USA
A. Hoffmann
Affiliation:
Institute for Solid-State-Physics, Technical University Berlin, 10623 Berlin, Germany
T. Graf
Affiliation:
Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
M. Gjukic
Affiliation:
Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
Get access

Abstract

Molecular beam epitaxy-grown GaN with different Mn concentrations (5–23 × 10 cm-3) and codoped with Si were investigated by cathodoluminescence (CL) spectroscopy and optical transmission measurements. In the GaN:Mn, an intense absorption peak at 1.414 +/- 0.002 eV was observed. This peak was attributed to an internal T2∼> E transition of the deep neutral Mn3+ state since its intensity scaled with the Mn3+ concentration. The CL measurements showed that Mn-doping concentrations around 1020 cm-3 had three effects on the emission spectrum: (i) the donor bound exciton at 3.460 eV was reduced by more than one order of magnitude, (ii) the donor-acceptor-pair band at 3.27 eV was completely quenched and (iii) the yellow luminescence centered at 2.2 eV was the strongly decreased. The latter two effects were attributed to a reduced concentration of VGa. In the infrared spectral range, three broad, Mn-doping related CL emission bands centered at 1.01 ± 0.02 eV, 1.09 ± 0.02 eV and 1.25 ± 0.03 eV were observed. These bands might be related to deep donor complexes, which are generated as a result of the heavy Mn-doping, rather than internal transitions at the Mn atom.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Meyer, B.K., Hoffmann, A. and Thurian, P., Defect spectroscopy in the nitrides, in Gil, B. (ed.) Physics and Applications of Group III Nitride Semiconductor Compounds, Oxford University Press (1997), 242306 Google Scholar
2. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000)CrossRefGoogle Scholar
3. Reed, M. L., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M. J., Parker, C. A., Roberts, J. C. and Bedair, S. M., Appl. Phys. Lett. 79, 3473 (2001)CrossRefGoogle Scholar
4. Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K. and Hori, H., J. Appl. Phys. 91, 7911 (2002)CrossRefGoogle Scholar
5. Kronik, L., Jain, M. and Chelikowsky, J. R., Phys. Rev. B 66, 41203 (2002)CrossRefGoogle Scholar
6. Schneider, J., Kaufmann, U., Wilkening, W., Baeumler, M., Kohl, F., Phys. Rev. Lett. 59, 240 (1987)CrossRefGoogle Scholar
7. Graf, T., Gjukic, M., Brandt, M. S., Stutzmann, M. and Ambacher, O., Appl. Phys. Lett. 81, 5159 (2002)CrossRefGoogle Scholar
8. Korotkov, R. Y., Gregie, J. M. and Wessels, B. W., Appl. Phys. Lett. 80, 1731 (2002)CrossRefGoogle Scholar
9. Seo, S. S. A., Kim, M. W., Lee, Y. S., Noh, T. W., Park, Y. D., Thaler, G. T., Overberg, M. E., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 82, 4749 (2003)CrossRefGoogle Scholar
10. Baur, J., Kaufmann, U., Kunzer, M., Schneider, J., Amano, H., Akasaki, I., Detchprohm, T. and Hiramatsu, K., Materials Science Forum 196–201, 55 (1995)CrossRefGoogle Scholar
11. Katayama-Yoshida, H. and Sato, K., Physica B 327, 337 (2003)CrossRefGoogle Scholar
12. Kulatov, E., Nakayama, H., Mariette, H., Ohta, H., Uspenskii, Yu. A., Phys. Rev. B 66, 45203 (2002)CrossRefGoogle Scholar
13. Graf, T., Gjukic, M., Hermann, M., Brandt, M. S., Stutzmann, M., Görgens, L., Philipp, J. B. and Ambacher, O., J. Appl. Phys. 93, 9697 (2003)CrossRefGoogle Scholar
14. To avoid electron beam induced charging, the samples were coated with a thin carbon layer.Google Scholar
15. Dingle, R. and Ilegems, M., Solid State Commun. 9, 175 (1971)CrossRefGoogle Scholar
16. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 2395 (1980)CrossRefGoogle Scholar
17. Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 69, 503 (1996)CrossRefGoogle Scholar
18. Saarinen, K., Laine, T., Kuisma, S., Nissila, J., Hautojarvi, P., Dobrzynski, L., Baranowski, J. M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszczynski, M., Grzegory, I. and Porowski, S., Phys. Rev. Lett. 79, 3030 (1997)CrossRefGoogle Scholar
19. Monemar, B., Journal of Crystal Growth 189/190, 1 (1998)CrossRefGoogle Scholar
20. Korotkov, R. Y., Gregie, J. M., Han, B. and Wessels, B. W., Physica B 308–310, 18 (2001)CrossRefGoogle Scholar
21. Van de Walle, C. G., Phys. Rev. B 56, R10020 (1997)CrossRefGoogle Scholar
22. Podsiadlo, S., Szyszkoa, T., Warsoa, G., Turos, A., Ratajczak, R., Kowalczyk, A., Gebicki, W., Strzalkowski, I., Grambole, D., Hermann, F., Vacuum 70, 207 (2003)CrossRefGoogle Scholar
23. Kaufmann, U., Schlotter, P., Obloh, H., Köhler, K., and Maier, M., Phys. Rev. B 62, 10867 (2000)CrossRefGoogle Scholar
24. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989)CrossRefGoogle Scholar
25. Gelhausen, O., Phillips, M. R., Klein, H. N., and Goldys, E. M., Appl. Phys. Lett. 81, 3747 (2002)CrossRefGoogle Scholar
26. Hovington, P., Drouin, D., and Gauvin, R., Scanning 19, 1 (1997)CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical Properties of Mn-doped GaN
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical Properties of Mn-doped GaN
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical Properties of Mn-doped GaN
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *