Hostname: page-component-cc8bf7c57-ksm4s Total loading time: 0 Render date: 2024-12-10T06:39:19.706Z Has data issue: false hasContentIssue false

Optical Properties of Deuterium Terminated Porous Silicon

Published online by Cambridge University Press:  15 February 2011

Takahiro Matsumoto
Affiliation:
Single Quantum Dot Project, ERATO, Japan Science and Technology Corporation, 5–9–9 Tokodai, Tsukuba 300–26, Japan, tomato@sqdp.trc-net.co.jp
Yasuaki Masumoto
Affiliation:
Single Quantum Dot Project, ERATO, Japan Science and Technology Corporation, 5–9–9 Tokodai, Tsukuba 300–26, Japan, tomato@sqdp.trc-net.co.jp
Nobuyoshi Koshida
Affiliation:
Division of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan
Get access

Abstract

We have studied the optical properties of deuterium-terminated porous silicon. The photoluminescence spectrum was different from that of usual hydrogen-terminated porous Si despite porous Si showing both the same structure and the same absorption spectrum. These results indicate that the surface vibration of terminated atoms couples to the quantum confined states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2]Chabal, Y.J. and Raghavachari, K., Phys. Rev. Lett. 53, 282 (1984).Google Scholar
[3]Hydrogen in Semiconductors, edited by Pankove, J.I. and Johnson, N.M. (AcademicPress, New York, 1991).Google Scholar
[4]Gupta, P., Colvin, V.L., and George, S.M., Phys. Rev. B 37, 8234 (1988).Google Scholar
[5]Hardeman, R.W., Beale, M.I.J., Gasson, D.B., Keen, J.M., Pickering, C., and Robbins, D.J., Surf. Sci. 152/153, 1051 (1985).Google Scholar
[6]Lehmann, V., Jobst, B., Muschik, T., Kux, A., and Petrova-Koch, V., Jpn. J. Appl. Phys. 32, 2095 (1993).Google Scholar
[7]Matsumoto, T., Masumoto, Y., and Koshida, N., to be published.Google Scholar
[8] Absorption coefficient α = 400 cm−1 is used to determine the bandgap. The detailed discussion is given in Xie, Y.H. et al. , Phys. Rev. B 49, 5386, (1994).Google Scholar
[9]Ramirez, R. and Herrero, C.P., Phys. Rev. Lett. 73, 126 (1994).Google Scholar
[10]Karlsson, C.J., Owman, F., Landemark, E., Chao, Y. -C., Mårtensson, P., and Uhrberg, R.I.G., Phys. Rev. Lett. 72, 4145 (1994).Google Scholar
[11]Lee, T.D., Low, F.E., and Pines, D., Phys. Rev. 90, 297 (1953).Google Scholar
[12]Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y. -H., Ross, F.M., Harris, T.D., Brown, W.L., Chabel, Y.J., Brus, L.E., and Citrin, P.H., Phys. Rev. Lett. 72, 2648 (1994).Google Scholar