Skip to main content Accessibility help
×
Home

Octadecyltriethoxysilane Surface Modification of Zinc Oxide

Published online by Cambridge University Press:  01 February 2011

Cary Allen
Affiliation:
carygallen@gmail.com, Colorado School of Mines, Physics, 1523 Illinois St., Golden, CO, 80401, United States, 970 946 6656
Darick J. Baker
Affiliation:
dbaker@mines.edu, Colorado School of Mines, Physics, 1523 Illinois St., Golden, CO, 80401, United States
Thomas E. Furtak
Affiliation:
tfurtak@mines.edu, Colorado School of Mines, Physics, 1523 Illinois St., Golden, CO, 80401, United States
Reuben T. Collins
Affiliation:
rtcollin@mines.edu, Colorado School of Mines, Physics, 1523 Illinois St., Golden, CO, 80401, United States
Matthew S. White
Affiliation:
matthew_white@nrel.gov, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, United States
Dane T. Gillaspie
Affiliation:
Dane_Gillaspie@nrel.gov, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, United States
Dana C. Olson
Affiliation:
dana_olson@nrel.gov, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, United States
David S. Ginley
Affiliation:
david_ginley@nrel.gov, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, United States
Get access

Abstract

Zinc Oxide (ZnO) is actively investigated for hybrid organic inorganic device applications. The interface greatly influences the electronic properties of these devices. Molecular surface modification of ZnO is being investigated for its potential to control the alignment of energy levels, charge transfer, as well as, interfacial chemical characteristics that influence device fabrication. In this study, octadecyltriethoxysilane (OTES) treatments of thin film ZnO produced by sol-gel decomposition were explored. The ZnO films were hydroxylated and then modified using OTES in solution. The condensation reaction of the OTES at the surface was promoted by the addition of a protoamine catalyst. Contact angle and infrared spectroscopy studies confirmed the surface modification and indicated that the coverage of the OTES was submonolayer. The modified ZnO films were reproducible and stable for long periods. The effects of the modification on subsequently spin-cast poly[3-hexylthiophene](P3HT) and on hybrid ZnO/P3HT organic solar cell performance are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Olson, D. C.; Piris, J.; Collins, R. T.; Shaheen, S. E.; Ginley, D. S. Thin Solid Films 2006, 496, 2629.CrossRefGoogle Scholar
[2] Regan, O. Gratzel, B. M. Nature 1991, 353, 737740.Google Scholar
[3] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539541.CrossRefGoogle Scholar
[4] Haque, S. A.; Koops, S.; Tokmoldin, N.; Durrant, J. R.; Huang, J.; Bradley, D. D. C.; Palomares, E. Advanced Materials 2007, 19, 683687.CrossRefGoogle Scholar
[5] White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S. Applied Physics Letters 2006, 89, 143517.CrossRefGoogle Scholar
[6] Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J. J. Phys. Chem. B 2005, 109, 95059516.CrossRefGoogle Scholar
[7] Coakley, K. M.; Mcgehee, M. D. Applied Physics Letters 2003, 83, 33803382.CrossRefGoogle Scholar
[8] Baxter, J. B.; Aydil, E. S. Applied Physics Letters 2005, 86, 053114.CrossRefGoogle Scholar
[9] Ravirajan, P.; Peiro, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J. J. Phys. Chem. B 2006, 110, 76357639.CrossRefGoogle Scholar
[10] Gregg, B. A. Mater. Res. Bull. 2005, 30, 2022.CrossRefGoogle Scholar
[11] Kudo, N.; Honda, S.; Shimazaki, Y.; Ohkita, H.; Ito, S.; Benten, H. Applied Physics Letters 2007, 90, 183513.CrossRefGoogle Scholar
[12] Chong, L.W.; Lee, Y.L.; Wen, T.C. Thin Solid Films 2007, 515, 28332841.CrossRefGoogle Scholar
[13] Goh, C.; Scully, S. R.; Mcgehee, M. D. Journal of Applied Physics 2007, 101, 114503+.CrossRefGoogle Scholar
[14] Sagiv, J. J. Am. Chem. Soc. 1980, 102, 9298.CrossRefGoogle Scholar
[15] Schwartz, D. K. Annu. Rev. Phys. Chem. 2001, 52, 107137.CrossRefGoogle Scholar
[16] Salleo, A.; Chabinyc, M. L.; Yang, M. S.; Street, R. A. Applied Physics Letters 2002, 81, 43834385.CrossRefGoogle Scholar
[17] Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat Mater 2007, 6, 497500.CrossRefGoogle Scholar
[18] Walba, D. M.; Liberko, C. A.; Korblova, E.; Farrow, M.; Furtak, T. E.; Chow, B. C.; Schwarz, D. K.; Freeman, A. S.; Douglas, K.; Williams, S. D.; Klittnick, A. F.; Clark, N. A. Liquid Crystals 2004, 31, 481489.CrossRefGoogle Scholar
[19] Blitz, J. Shreedhara, P.,; Leyden, D. E. Journal of Colloid and Interface Science 1988, 126, 387392.CrossRefGoogle Scholar
[20] Ohyama, M.; Kouzuka, H.; Yoko, T. Thin Solid Films 1997, 306, 7885.CrossRefGoogle Scholar
[21] Stalder, A. F.; Kulik, G.; Barbieri, L.; Hoffmann, P. Colloids Surf., A 2006, 286, 92103.CrossRefGoogle Scholar
[22] Asakuma, N.; Fukui, T.; Toki, M.; Awazu, K.; Imai, H. Thin Solid Films 2003, 445, 284287.CrossRefGoogle Scholar
[23] Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. Journal of American Chemecial Society 1990, 112, 558569.CrossRefGoogle Scholar
[24] Howland, M. C.; Johal, M. S.; Parikh, A. N. Langmuir 2005, 21, 1046810474.CrossRefGoogle ScholarPubMed
[25] Parikh, A. N.; Allara, D. L.; Azouz, I. B.; Rondelez, F. Journal of Physical Chemistry 1994, 98, 75777590.CrossRefGoogle Scholar
[26] Macphail, R. A.; Strauss, H. L.; Snyder, R. G.; Elliger, C. A. Journal of Physical Chemistry 1984, 88, 334341.CrossRefGoogle Scholar
[27] Snyder, R. G.; Strauss, H. L.; Elliger, C. A. Journal of Physical Chemistry 1982, 86, 51455150.CrossRefGoogle Scholar
[28] Kulkarni, S. A.; Kakade, B. A.; Mulla, I. S.; Pillai, V. K. Journal of Colloid and Interface Science 2006, 299, 777784.CrossRefGoogle Scholar
[29] Wang, G.; Swensen, J.; Moses, D.; Heeger, A. J. Journal of Applied Physics 2003, 93, 61376141.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tmbpq Total loading time: 1.698 Render date: 2021-01-22T14:16:01.636Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Octadecyltriethoxysilane Surface Modification of Zinc Oxide
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Octadecyltriethoxysilane Surface Modification of Zinc Oxide
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Octadecyltriethoxysilane Surface Modification of Zinc Oxide
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *