Skip to main content Accessibility help
×
Home

Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells

Published online by Cambridge University Press:  21 February 2013


Benjamin Holmes
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052.
Nathan J. Castro
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052.
Jian Li
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052.
Lijie Grace Zhang
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052. Department of Medicine, The George Washington University, Washington, DC 20052.

Abstract

Cartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension and surface nanoporosity were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter or suitable nanoporous structures. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce GAG and collagen synthesis that is indicative of chondrogenic differentiations of MSCs. Our novel scaffolds also performed better than controls, which make them promising for cartilage tissue engineering applications.


Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Langer, R. and Vacanti, J. P., Science 260 (5110), 920926 (1993).CrossRef
Vacanti, J. P. and Langer, R., Lancet 354 Suppl 1, SI32–34 (1999).CrossRef
Zhang, L., Hu, J. and Athanasiou, K. A., Crit Rev Biomed Eng 37 (1–2), 157 (2009).CrossRef
Hutmacher, D. W., Biomaterials 21 (24), 25292543 (2000).CrossRef
Smith, L. A. and Ma, P. X., Colloids and surfaces. B, Biointerfaces 39 (3), 125131 (2004).CrossRef
Yoshimoto, H., Shin, Y. M., Terai, H. and Vacanti, J. P., Biomaterials 24 (12), 20772082 (2003).CrossRef
Nair, L. S., Bhattacharyya, S. and Laurencin, C. T., Expert opinion on biological therapy 4 (5), 659668 (2004).CrossRef
Ma, Z., Kotaki, M., Inai, R. and Ramakrishna, S., Tissue engineering 11 (1–2), 101109 (2005).CrossRefPubMed
Thorvaldsson, A., Stenhamre, H., Gatenholm, P. and Walkenström, P., Biomacromolecules 9 (3), 10441049 (2008).CrossRef
Meng, X., Li, W., Young, F., Gao, R., Chalmers, L., Zhao, M. and Song, B., Journal of visualized experiments: JoVE (60) (2012).
Shim, I. K., Jung, M. R., Kim, K. H., Seol, Y. J., Park, Y. J., Park, W. H. and Lee, S. J., Journal of Biomedical Materials Research Part B: Applied Biomaterials 95B (1), 150160 (2010).CrossRef
Chen, L., Zhu, C., Fan, D., Liu, B., Ma, X., Duan, Z. and Zhou, Y., Journal of Biomedical Materials Research Part A 99A (3), 395409 (2011).CrossRef
Lee, H., Yeo, M., Ahn, S., Kang, D.-O., Jang, C. H., Lee, H., Park, G.-M. and Kim, G. H., Journal of Biomedical Materials Research Part B: Applied Biomaterials 97B (2), 263270 (2011).CrossRef
Yaszemski, M. J., Payne, R. G., Hayes, W. C., Langer, R. S., Aufdemorte, T. B. and Mikos, A. G., Tissue engineering 1 (1), 4152 (1995).CrossRef
Zhang, L. and Webster, T. J., Nanotoday 4 (1), 6680 (2009).CrossRef
Phipps, M. C., Clem, W. C., Grunda, J. M., Clines, G. A. and Bellis, S. L., Biomaterials 33 (2), 524534 (2012).CrossRef
Shin, T. J., Park, S. Y., Kim, H. J., Lee, H. J. and Youk, J. H., Biotechnology letters 32 (6), 877882 (2010).CrossRef
Colter, D. C., Class, R., DiGirolamo, C. M. and Prockop, D. J., Proc Natl Acad Sci U S A 97 (7), 32133218 (2000).CrossRef
Fang, R., Zhang, E., Xu, L. and Wei, S., Journal of Nanoscience and Nanotechnology 10 (11), 77477751 (2010).CrossRef
Garg, T., Singh, O., Arora, S. and Murthy, R., Critical reviews in therapeutic drug carrier systems 29 (1), 163 (2012).CrossRef
Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M. and D'Lima, D. D., Tissue engineering. Part A 18 (11–12), 13041312 (2012).CrossRef
Perera, J. R., Gikas, P. D. and Bentley, G., Annals of the Royal College of Surgeons of England 94 (6), 381387 (2012).CrossRef
Hogervorst, T., Eilander, W., Fikkers, J. T. and Meulenbelt, I., Clinical orthopaedics and related research (2012).

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-z76xg Total loading time: 0.336 Render date: 2020-12-04T02:47:49.550Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 01:59:33 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *