Hostname: page-component-7d684dbfc8-mqbnt Total loading time: 0 Render date: 2023-09-24T03:39:20.240Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Nonlinear optical Properties of Pentaazadentate Expanded Porphyrins and Application in Optical Limiting

Published online by Cambridge University Press:  03 September 2012

Duoyuan Wang
Affiliation:
Institute of Photographic Chemistry, Academia Sinica, Beijing, 100101 China
Wenfang Sun
Affiliation:
Institute of Photographic Chemistry, Academia Sinica, Beijing, 100101 China
Shiming Dong
Affiliation:
Institute of Photographic Chemistry, Academia Sinica, Beijing, 100101 China
Jinhai Si
Affiliation:
Department of Physics, Harbin Institute of Technology, Harbin 150006, China
Chunfei Li
Affiliation:
Department of Physics, Harbin Institute of Technology, Harbin 150006, China
Get access

Abstract

Nonlinear optical properties of asymmetric pentaazadentate expanded porphyrin metal complexes are investigated. The transmittance dependence of the target compounds on the incident laser intensity generates different nonlinear optical effects in the excited states. The reverse saturable absorption at 532 nm in the ns pulses and the saturable absorption for the pspulses at high fluences are observed in solutions. The nonlinear refractive indices n2 aremeasured by the Z-scan technique. The optical limiting based on the RSA and transverse refraction are demonstrated for ns and continuous laser. An optical limiter based on the RSA and self-refraction is performed, in which the limitating threshold and amplitude of output energy are reduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rao, D V G L N and Aranda, F.J. Appl. Phys. Lett., 58, 1241 (1991).CrossRefGoogle Scholar
2. Norwood, R.A. and Sounik, J.R., Appl. Phys. Lett., 60, 295 (1991).Google Scholar
3. Perry, J.W., Mansour, K., Marder, S.R., Perry, K.J., Alvarez, D. Jr., and Choong, I., Opt. Lett. 19, 625 (1994).CrossRefGoogle Scholar
4. Si, J., Yang, M, Wang, Y., Zhang, L., Li, C.; Wang, D., Dong, S., Sun, W., Appl. Phy. Lett, 64(23), 3083 (1994).CrossRefGoogle Scholar
5. Si, J., Yang, M., Li, C.; Wang, D., Dong, S., Sun, W., Acta Photonica Sinica 23(4), 319 (1994).Google Scholar
6. Sun, W., and Wang, D., Science in China (Series B) 39(5), 509 (1996).Google Scholar
7. Gong, Q., Wang, Y., Yang, S., Xia, Z., Zou, Y.; Sun, W., Dong, S., Wang, D., J. Phys. D: Appl. Phys. 27, 911 (1994).CrossRefGoogle Scholar
8. Yang, M., Si, J., Wang, Y., Li, C., Acta Physica Sinica 44(3), 419 (1995).Google Scholar
9. Shirk, J.S., Lindle, J.R., Bartoli, F.J., Kafafi, Z.H., Snow, A.W. and Boyle, M.E., Int. J. Nonlinear Opt. Phys. 1, 699 (1992).CrossRefGoogle Scholar
10. Prasad, P.N. and Williams, D.J., Introduction To Nonlinear Effects In Molecules And Polymers (Wiley, New York, 1991), Chap. 10.Google Scholar
11. Maiya, B.G., Harriman, A., Sessler, J.L., Hemmi, G., Murai, T., and Mallouk, T.E., J. Phys. Chem., 93, 8111 (1989).CrossRefGoogle Scholar
12. Bahae, M.S.,Said, A.A., Wei, T.H., Hayan, D.J. and Stryland, E.W.V., IEEE J.Quantum Electronics, 26, 764 (1990).Google Scholar