Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-5dd2w Total loading time: 0.271 Render date: 2022-05-26T07:17:15.226Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Nonlinear Optical Materials Synthesized by Ion Implantation: Metal Quantum Dots in Transparent Dielectrics

Published online by Cambridge University Press:  22 February 2011

Richard F. Haglund Jr.
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
D. H. Osborne Jr.
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
LI Yang
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
R. H. Magruder III
Affiliation:
Department of Applied and Engineering Sciences, Vanderbilt University, Nashville, TN 37235
C. W. White
Affiliation:
Solid-State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. A. Zuhr
Affiliation:
Solid-State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Composites consisting of nanometer-size metal clusters embedded in a host dielectric can be synthesized by implanting metal ions in either glassy or crystalline substrates. The size and size distributions of the nanoclusters can be controlled by varying the parameters either of the ion-implantation process or subsequent annealing. The nonlinear optical response of these quantum-dot composites can be modeled as that of independent electrons confined to a spherical potential well; experimental data on relaxation times compares favorably with this simple picture. Optical figures-of-merit of these materials suggest potential for applications in nonlinear waveguide devices, particularly since ion implantation is compatible with device-fabrication processes. The basic features of these materials are illustrated from experiments on Cu and Pb clusters in silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Flytzanis, C., Hache, F., Klein, M. C., Ricard, D. and Roussignol, Ph., Prog. Opt. 29, 321 (1991).CrossRefGoogle Scholar
2 Haglund, R. F. Jr., Yang, L., Magruder, R. H. III, Wittig, J. E., Becker, K. and Zuhr, R. A., Opt. Lett. 18, 373 (1993).CrossRefGoogle Scholar
3 Magruder, R. H. III, Haglund, R. F. Jr., Yang, Li, White, C. W., Yang, Lina, Dorsinville, R. and Alfano, R. R., Appl. Phys. Lett. 62, 465 (1993).CrossRefGoogle Scholar
4 White, C. W., Thomas, D. K., Hensley, D. K., Zuhr, R. A., McCallum, J. C., Pogany, A., Haglund, R. F. Jr., Magruder, R. H. and Yang, L., J. Nanostr. Materials, in press (1993).Google Scholar
5 Bloemer, M. J., Haus, J. W. and Ashley, P. R., J. Opt. Soc. Am. B 7, 790 (1990).CrossRefGoogle Scholar
6 Hache, F., Ricard, D., Flytzanis, C. and Kreibig, U., Appl. Phys. A 47, 347 (1988).Google Scholar
7 Haus, J. W., Kalyaniwalla, N., Inguva, R., Bloemer, M. and Bowden, C. M., J. Opt. Soc. Am. B 6, 797 (1989).Google Scholar
8 Magruder, R. H. III, Haglund, R. F. Jr., Yang, L., Becker, K. and Zuhr, R. A., Mat. Res. Soc. Symp. Proc. 243, 369 (1992).Google Scholar
9 See Flytzanis, C. and Ouder, J. L., eds., Nonlinear Optics: Materials and Devices, (Heidelberg: Springer-Verlag, 1986.CrossRefGoogle Scholar
10 Kittel, C., Introduction to Solid State Physics, 6th Edition (New York: John Wiley, 1986).Google Scholar
11 Faraday, M., Philos. Trans. 147, 145 (1857).Google Scholar
12 For reviews, see Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles (New York: John Wiley and Sons, 1983), especially Chapters 5 and 12. See also Genzel, L., Martin, T. P. and Kreibig, U., Physik, Z. B 21, 339 (1975).Google Scholar
13 Mie, G., Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
14 Maxwell-Gamett, C., Phil. Trans. R. Soc. 203, 385 (1904) and ibid., 205 , 237 (1906).Google Scholar
15 Doyle, W. J., Phys. Rev. 111, 1067 (1958). R. H. Doremus, J. Chem. Phys. 40, 2389 (1964) and J. Chem. Phys. 42, 414 (1965). U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985).CrossRefGoogle Scholar
16 Magruder, R. H. III, Haglund, R. F. Jr., Yang, Li and Zuhr, R. A., submitted to J. Appl. Phys., 1993.Google Scholar
17 Halperin, W. P., Rev. Mod. Phys. 58, 533 (1986).CrossRefGoogle Scholar
18 Sheik-Bahae, M., Said, A. A., Wei, T., Hagan, D. J. and VanStryland, E. W., IEEE J. Quant. Elect. 26, 760 (1990).CrossRefGoogle Scholar
19 Yang, Li, “Nonlinear Optics of Noble-Metal Crystallites Embedded in Fused Silica Glass,” Ph.D. Dissertation, Vanderbilt University, 1993, unpublished.Google Scholar
20 Ref. 2 and Yang, L., Becker, K., Smith, F. M., Magruder, R. H. III, Haglund, R. F. Jr., Yang, Lina, Dorsinville, R. and Alfano, R. R., J. Opt. Soc. Am. B, in press (Feb. 1994).Google Scholar
21 Ref. 1. and Becker, K., Yang, Li and Haglund, R. F. Jr., submitted to J. Opt. Soc. Am. B. Google Scholar
22 See Saleh, B. E. A. and Teich, M. C., Fundamentals of Photonics (New York: John Wiley and Sons, 1991), Chs. 19, 21, 22.CrossRefGoogle Scholar
23 Hall, Dennis G., Prog. Opt. 29,1 (1991).Google Scholar
24 Tamir, T., ed., Guided-Wave Optoelectronics (Heidelberg, Springer-Verlag, 1988).CrossRefGoogle Scholar
25 Examples of specific circuits include Jensen, S. M., IEEE J. Quantum. Electron. QE-18, 15801583 (1982), and A. Lattes, H. A. Haus, F. J. Leonberger and E. P. Ippen, IEEE J. Quantum Electron. QE-19,1718–1723 (1983).CrossRefGoogle Scholar
26 Stegeman, G. I., Wright, E. M., Finlayson, N., Zanoni, R. and Seaton, C. T., IEEE J. Lightwave Tech. 6, 953970 (1988); G.I. Stegeman and R. H. Stolen, J. Opt. Soc. Am. B 6, 652–662 (1989).CrossRefGoogle Scholar
27 See Smith, P. E. W., “All-optical devices: materials requirements,” Proc. SPIE 1852, 29 (1993).Google Scholar
28 Yariv, A., Quantum Electronics, Fourth Edition (New York: John Wiley and Son, 1989).Google Scholar
29 Mizrahi, V., DeLong, K. W., Stegeman, G. I., Saifi, M. A. and Andrejco, M. J., Opt. Lett. 14, 1140 (1989). Also G. I. Stegeman, “Material Figures of Merit,” Proc. SPIE 1852, 75.CrossRefGoogle Scholar
30 Chandler, P. J., Field, S. J., Hanna, D. C., Shepherd, D. P., Townsend, P. D., Trapper, A. C. and Zhang, L., Elect. Lett. 25 (1989) 985. See also Chandler, P. J., Zhang, L. and P. D.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nonlinear Optical Materials Synthesized by Ion Implantation: Metal Quantum Dots in Transparent Dielectrics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Nonlinear Optical Materials Synthesized by Ion Implantation: Metal Quantum Dots in Transparent Dielectrics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Nonlinear Optical Materials Synthesized by Ion Implantation: Metal Quantum Dots in Transparent Dielectrics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *