Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vmws4 Total loading time: 0.837 Render date: 2021-04-13T15:00:53.654Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Newtonian Flow in Bulk Amorphous Alloys

Published online by Cambridge University Press:  10 February 2011

J. Wadsworth
Affiliation:
Lawrence Livermore National Laboratory, L-350, P.O. Box 808, Livermore, CA 94551
T.G. Nieh
Affiliation:
Lawrence Livermore National Laboratory, L-350, P.O. Box 808, Livermore, CA 94551
Get access

Abstract

Bulk amorphous alloys have many unique properties, e.g., superior strength and hardness, excellent corrosion resistance, reduced sliding friction and improved wear resistance, and easy formability in a viscous state. These properties, and particularly easy formability, are expected to lead to applications in the fields of near-net-shape fabrication of structural components. Whereas large tensile ductility has generally been observed in the supercooled liquid region in metallic glasses, the exact deformation mechanism, and in particular whether such alloys deform by Newtonian viscous flow, remains a controversial issue. In this paper, existing data are analyzed and an interpretation for the apparent controversy is offered. In addition, new results obtained from an amorphous alloy (composition: Zr–10Al–5Ti–17.9Cu–14.6Ni, in at. %) are presented. Structural evolution during plastic deformation is particularly characterized. It is suggested that the appearance of non-Newtonian behavior is a result of the concurrent crystallization of the amorphous structure during deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Klement, W., Willens, R., and Duwez, P., Nature, 187 (1960) 869.10.1038/187869b0CrossRefGoogle Scholar
2. Liu, C.T., et al. , Mater. Trans. A 29A (1998) 1811.10.1007/s11661-998-0004-6CrossRefGoogle Scholar
3. Hashimoto, K., Kumagai, N., Yoshioka, H., Habazaki, H., Kawashima, A., Asami, K., and Zhang, B.-P., Mater. Sci. Eng., A133 (1991) 22.10.1016/0921-5093(91)90007-ACrossRefGoogle Scholar
4. Morris, D.G., in Proc. 5th Int‘l Conf. on Rapidly Quenched Metals, p. 1775, edited by Steeb, S. and Warlimont, H., Elsevier Science Publishers B.V., 1985.Google Scholar
5. Kawamura, Y., Shibata, T., Inoue, A., and Masumoto, T., Scr. Mater., 37 (1997) 431.10.1016/S1359-6462(97)00105-XCrossRefGoogle Scholar
6. Kawamura, Y., Nakamura, T., and Inoue, A., Scr. Mater., 39(3) (1998) 301.10.1016/S1359-6462(98)00163-8CrossRefGoogle Scholar
7. Kawamura, Y., Nakamura, T., Inoue, A., and Masumoto, T., Mater. Trans. JIM, 40(8) (1999) 794.10.2320/matertrans1989.40.794CrossRefGoogle Scholar
8. Masumoto, T. and Maddin, R., Mater. Sci. Eng., 19(1) (1975) 1.10.1016/0025-5416(75)90002-6CrossRefGoogle Scholar
9. Chen, H., He, Y., Shiflet, G.J., and Poon, S.J., Nature, 367(6463) (1994) 541.10.1038/367541a0CrossRefGoogle Scholar
10. Spaepen, F., Acta Metall., 25 (1977) 407.10.1016/0001-6160(77)90232-2CrossRefGoogle Scholar
11. Argon, A.S., Acta Metall., 27 (1979) 47.10.1016/0001-6160(79)90055-5CrossRefGoogle Scholar
12. Li, J.C.M., in Proc. 4th Int‘l Conf. on Rapidly Quenched Metals, p. 1335, edited by Masumoto, T. and Suzuki, K., Japan Institute of Metals, Sendai, Japan, 1982.Google Scholar
13. Mulder, A.L., Derksen, R.J.A., Drijver, J.W., and Radelaar, S., in Proc. 4th International Conf. on Rapidly Quenched Metals, p. 1345, edited by Masumoto, T. and Suzuki, K., Japan Institute of Metals, Sendai, Japan, 1982.Google Scholar
14. Taub, A.I. and Luborsky, F.E., Acta Metall., 29 (1981) 1939.10.1016/0001-6160(81)90031-6CrossRefGoogle Scholar
15. Eyring, H., J. Chem. Phys., 4 (1936) 283.10.1063/1.1749836CrossRefGoogle Scholar
16. Homer, C. and Eberhardt, A., Scr. Metall., 14 (1980) 1331.10.1016/0036-9748(80)90188-XCrossRefGoogle Scholar
17. Zelenskiy, V.A., Tikhonov, A.S., and Kobylkin, A.N., Russian Metallurgy, 4 (1985) 152.Google Scholar
18. Busch, R., Bakke, E., and Johnson, W.L., Acta Mater., 46(13) (1998) 4725.10.1016/S1359-6454(98)00122-0CrossRefGoogle Scholar
19. Khonik, V.A. and Zelenskiy, V.A., Phys. Met. Metall., 67(1) (1989) 196.Google Scholar
20. Csach, K., Fursova, Y.V., Khonik, V.A., and Ocelik, V., Scr. Mater., 39(10) (1998) 1377.10.1016/S1359-6462(98)00323-6CrossRefGoogle Scholar
21. Ashdown, C.P., Zhang, Y., and Grant, N.J., Int‘l J. Powder Metall., 23(1) (1987) 33.Google Scholar
22. Brandt, H., Gossing, J., Mathiak, G., and Neuhauser, H., Z. Metallkd., 84(4) (1992) 273.Google Scholar
23. Wang, D.L., Kong, Q.P., and Shui, J.P., Scr. Metall. Mater., 31(1) (1994) 47.10.1016/0956-716X(94)90093-0CrossRefGoogle Scholar
24. Deng, J., Wang, D.L., Kong, Q.P., and Shui, J.P., Scr. Metall. Mater., 32(3) (1995) 349.10.1016/S0956-716X(99)80063-6CrossRefGoogle Scholar
25. Higashi, K., Mukai, T., Uoya, A., Inoue, A., and Masumoto, T., Mater. Trans. JIM 36(12) (1995) 1467.10.2320/matertrans1989.36.1467CrossRefGoogle Scholar
26. Uoya, A., Shibata, T., Higashi, K., Inoue, A., and Masumoto, T., J. Mater. Res., 11(11) (1996) 2731.10.1557/JMR.1996.0346CrossRefGoogle Scholar
27. Nieh, T.G., Wang, J., Wadsworth, J., Mukai, T., and Liu, C.T., in Symposium on Bulk Metallic Glasses, edited by Johnson, W.L., Liu, C.T., and Inoue, A., Materials Research Soc., Pittsburgh, PA, 1999. -in pressGoogle Scholar
28. Cottrell, A.H. and Bilby, B.A., Proc. Phys. Soc (London), 62A (1949) 49.Google Scholar
29. Nieh, T.G. and Nix, W.D., Metall. Trans., 17A (1986) 121.10.1007/BF02644448CrossRefGoogle Scholar
30. Kawamura, Y., Shibata, T., Inoue, A., and Masumoto, T., Mater. Trans. JIM 40(4) (1999) 335.10.2320/matertrans1989.40.335CrossRefGoogle Scholar
31. Nieh, T.G., Sherby, O.D., and Wadsworth, J., Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, UK, 1997.10.1017/CBO9780511525230CrossRefGoogle Scholar
32. Maddin, R. and Masumoto, T., Mater. Sci. Eng., 9 (1972) 153.10.1016/0025-5416(72)90027-4CrossRefGoogle Scholar
33. Kim, Y.H., Inoue, A., and Masumoto, T., Mater. Trans. JIM 31 (1990) 747.10.2320/matertrans1989.31.747CrossRefGoogle Scholar
34. Kim, Y.H., Hiraga, K., Inoue, A., Masumoto, T., and Jo, H.H., Mater. Trans. JIM 35(5) (1994) 293.10.2320/matertrans1989.35.293CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Newtonian Flow in Bulk Amorphous Alloys
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Newtonian Flow in Bulk Amorphous Alloys
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Newtonian Flow in Bulk Amorphous Alloys
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *