Skip to main content Accessibility help
×
Home

Nanostructured Metal Oxide and Composite Electrodes for Use in Ultracapacitors

Published online by Cambridge University Press:  15 March 2011


Michael T. Brumbach
Affiliation:
Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Todd M. Alam
Affiliation:
Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Paul G. Kotula
Affiliation:
Materials Characterization, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Bonnie B. McKenzie
Affiliation:
Materials Characterization, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Bruce C. Bunker
Affiliation:
Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.

Abstract

Maximizing power and energy densities of ultracapacitors requires configuring redox-active materials in specific architectures that: 1) maximize electrolyte-electrode contact area, 2) minimize transport distances for both electrons and charge compensating species, and 3) minimize transport barriers. We have developed a simple solution-based method, using an organic template, that enables us to introduce hierarchical porosity in ruthenium oxide down to the nano-scale by controlling the oxidative crystal growth of RuO2. The high capacitances of the resulting nanostructured electrodes were found to be comparable to hydrous ruthenium oxide formed under dramatically different conditions. Materials characterization reveals that the organic template directs structure formation and promotes hydroxyl retention.


Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kötz, R. and Carlen, M., Elec. Acta. 45, 2483–98 (2000).CrossRefGoogle Scholar
2. Conway, B. E., Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, (Kluwer, 1999) pp. 599.Google Scholar
3. McKeown, D. A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E., and Rolison, D. R., J. Phys. Chem. B. 103, 4825–32 (1999).CrossRefGoogle Scholar
4. Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T., and Rolison, D. R., J. Phys. Chem. B. 106, 12677–83 (2002).CrossRefGoogle Scholar
5. Rolison, D. R., , Hagans, Swider, K. E., and Long, J. W., Lang. 15, 774 (1999).CrossRefGoogle Scholar
6. Zheng, J. P., Cygan, P. J., and Jow, T. R., J. Electrochem. Soc. 142, 8 2699–703 (1992).CrossRefGoogle Scholar
7. Zheng, J. P. and Xin, Y., J. Power Sources. 110, 8690 (2002).CrossRefGoogle Scholar
8. Fang, Q. L., Evans, D. A., Roberson, S. L., and Zheng, J. P., J. Electrochem. Soc. 148, 8 A8337 (2001).CrossRefGoogle Scholar
9. Barbieri, O., Hahn, M., Foelske, A., and Kotz, R., J. Electrochem. Soc. 153, 11 A204954 (2006).CrossRefGoogle Scholar
10. Foelske, A., Barbieri, O., Hahn, M., and Kotz, R., Electrochem. Sol. St. Lett. 9, 6 A268-72 (2006).CrossRefGoogle Scholar
11. Chang, K. H., Hu, C. C., and Chou, C. Y., Chem. Mat. 19, 8 2112–9 (2007).CrossRefGoogle Scholar
12. Kim, I. H. and Kim, K. B., J. Electrochem. Soc. 153, 2 A3839 (2006).CrossRefGoogle Scholar
13. Zheng, J. P., Electrochem. Sol. St. Lett. 2, 8 359–61 (1999).CrossRefGoogle Scholar
14. Min, M., Machida, K., Jang, J. H., Naoi, K., J. Electrochem. Soc. 153, 2 A3348 (2006).CrossRefGoogle Scholar
15. Lee, J. K., Pathan, H. M., Jung, K. D., and Joo, O. S., J. Power Sources. 159, 1527–31 (2006).CrossRefGoogle Scholar
16. Susanti, D., Tsai, D. S., Huang, Y. S., Korotcov, A., and Chung, W. H., J. Phys. Chem. C. 111, 26 9530–7 (2007).CrossRefGoogle Scholar
17. Hu, C. C., Chang, K. H., Lin, M. C., and Wu, Y. T., Nano Lett. 6, 12 2690–5 (2006).CrossRefGoogle Scholar
18. Tan, H., Ye, E., and Fan, W. Y., Adv. Mat., 18, 619–23 (2006).CrossRefGoogle Scholar
19. Cross, M. W., Varhue, W. J., Hitt, D. L., and Adams, E., Nanotechnology, 19, 045611–1. (2008).CrossRefGoogle Scholar
20. Chu, S. Z., Wada, K., Inoue, S., Hishita, S., and Kurashima, K., J. Phys. Chem. B. 107, 37 10180–4 (2003).CrossRefGoogle Scholar
21. Chu, S. Z., Inoue, S., Wada, K., and Hishita, S. J. Electrochem. Soc. 151, 1 C3844 (2004).CrossRefGoogle Scholar
22. Subhramannia, M., Balan, B. K., Sathe, B. R., Mulla, I. S., and Pillai, V. K., J. Phys. Chem. C. 111, 44 16593–600 (2007).CrossRefGoogle Scholar
23. Lee, D. J., Yim, S. S., Kim, K. S., Kim, S. H., and Kim, K. B., Electrochem Sol. St. Lett. 11, 6 K613 (2008).CrossRefGoogle Scholar
24. Sugimoto, W., Iwata, H., Murakami, Y., and Takasu, Y., J. Electrochem. Soc. 151, 8 A11817 (2004).CrossRefGoogle Scholar
25. Sugimoto, W., Yokoshima, K., Murakami, Y., and Takasu, Y., Elec. Acta. 52, 1742–8 (2006).CrossRefGoogle Scholar
26. Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y., and Takasu, Y., Agnew. Chem. Int. Ed. 42, 4092–6 (2003).CrossRefGoogle Scholar
27. Sugimoto, W., Iwata, H., yokoshima, K., Murakami, Y., and Takasu, Y., J. Phys. Chem. B. 109, 15 7330–8 (2005).CrossRefGoogle Scholar
28. Long, J. W., Swider, K. E., Merzbacher, C. I., and Rolison, D. R., Lang. 15, 3 780–5 (1999).CrossRefGoogle Scholar
29. Doubova, L. M., Daolio, S., and Battisti, A. De, J. Electroanal. Chem. 532, 2533 (2002).CrossRefGoogle Scholar
30. Ardizzone, S., Fregonara, G., and Trasatti, S., Elec. Acta. 35, 263 (1990).CrossRefGoogle Scholar
31. Trassatti, S., Elec. Acta. 36, 225 (1991).CrossRefGoogle Scholar
32. Brumbach, M. T., Bunker, B. C., et al. work to be published.Google Scholar
33. Antonelli, D. M. and Ying, J. Y., Angew. Chem. Int. Ed. Engl. 35, 4 426–30 (1996).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-6c64649b67-phtvg Total loading time: 0.253 Render date: 2020-12-03T09:19:13.168Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 09:15:26 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanostructured Metal Oxide and Composite Electrodes for Use in Ultracapacitors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanostructured Metal Oxide and Composite Electrodes for Use in Ultracapacitors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanostructured Metal Oxide and Composite Electrodes for Use in Ultracapacitors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *