Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-kbg4c Total loading time: 0.435 Render date: 2021-04-12T21:16:08.938Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Nanoparticle Based Multilayers as Multifunctional Optical Coatings

Published online by Cambridge University Press:  31 January 2011

Silvia Colodrero
Affiliation:
Silvia_Colodrero@fakemail.com, Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
Mauricio E. Calvo
Affiliation:
ECalvo@fakemail.com, Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
Olalla Sánchez Sobrado
Affiliation:
Olalla@fakemail.com, Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
Hernán Míguez
Affiliation:
hernan@icmse.csic.es, Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
Get access

Abstract

Herein we introduce nanoparticle based periodic multilayers as base materials to create different types of multifunctional coatings that combine optical, mechanical and diffusion properties. The technological potential of these versatile materials is demonstrated by showing applications in the fields of sensing and photovoltaic materials. Due to the porous nature of such structures, liquids and gases can infiltrate or condensate, respectively within the interstices, causing a variation of the refractive index (R.I.)of the layers. This gives rise to clear but gradual changes of the optical responses, either when liquids or the partial pressure of vapors are infiltrated in the structure. Also, photoconducting Bragg mirrors can be built by precise control of the spatial variation of the R.I. of the layers in a pure TiO2 multilayer. Rationally placed within a Dye Sensitized Solar Cell (DSSC), that gives rise to a significant enhancement of the solar to electric power conversion efficiency through the amplification of sunlight absorption. Direct observation of both optical absorption and photocurrent resonances can be seen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Fendler, J.H., Meldrum, F.C., Adv. Mater. 7, 607 (1995)10.1002/adma.19950070703CrossRefGoogle Scholar
2 Garzella, C., Comini, E., E, E. Tempesti, Frigeri, C., Sberveglieri, G., Sensors and Actuators B-Chemical 68, 189 (2000)10.1016/S0925-4005(00)00428-7CrossRefGoogle Scholar
3 Nayral, C., Ould-Ely, T., Maisonnat, A., Chaudret, B., Fau, P., Lescouzeres, L., Peyre-Lavigne, A., Adv. Mater. 11, 61 (1999)10.1002/(SICI)1521-4095(199901)11:1<61::AID-ADMA61>3.0.CO;2-U3.0.CO;2-U>CrossRef3.0.CO;2-U>Google Scholar
4 Henrich, V.E., Cox, P.A., in The Surface Science of Metal Oxides Cambridge University Press, 1996, New York Google Scholar
5 Freund, H.J., Dillmann, B., Seiferth, O., Klivenyi, G., Bender, M., Ehrlich, D., Hemmerich, I., Cappus, D., Catal. Tod. 32, 1 (1996)10.1016/S0920-5861(96)00072-7CrossRefGoogle Scholar
6 Regan B, B. O., Graëtzel, M., Nature 737, 353 (1991)Google Scholar
7 Joannopoulos, J.D., Meade, R.D., Winn, J.N., Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995 Google Scholar
8 Burnside, S.D., Shklover, V., Barbé, C., Comte, P., Arendse, F., Brooks, K., Grätzel, M., Chem. Mater. 10, 2419 (1998)10.1021/cm980702bCrossRefGoogle Scholar
9 Calvo, M.E., Colodrero, S., Rojas, T.C., Ocaña, M., Anta, J.A., Míguez, H., Adv. Func. Mater. 18, 2708 (2008)10.1002/adfm.200800039CrossRefGoogle Scholar
10 Colodrero, S.,; Ocaña, M., M.; Miguez, H., Langmuir 24, 4430 (2008)10.1021/la703987rCrossRefGoogle Scholar
11 Calvo, M.E., Sánchez-Sobrado, O., Colodrero, S., Míguez, H. Langmuir 25, 2443 (2009)10.1021/la8030057CrossRefGoogle Scholar
12 Shung, K.W.K., Tsai, Y.C., Phys. Rev. B 48, 11265 (1993)10.1103/PhysRevB.48.11265CrossRefGoogle Scholar
13 Mihi, A.; Míguez, H. J. Phys. Chem. B 109, 15968 (2005)10.1021/jp051828gCrossRefGoogle Scholar
14 Hulst, H.C. Van de, Light Scattering by Small Particles, Dover Publications, ISBN 0486642283 (1981)Google Scholar
15 Colodrero, S. S., Ocaña, M., Gonzalez-Elipe, A.R., Miguez, H., Langmuir 24, 9135 (2008)10.1021/la801210qCrossRefGoogle Scholar
16 Grätzel, M., Nature 414, 338 (2001)10.1038/35104607CrossRefGoogle Scholar
17 Colodrero, S., Mihi, A., Anta, J. A., Ocaña, M., Míguez, H. J. Phys Chem C. 113, 1150 (2009)10.1021/jp809789sCrossRefGoogle Scholar
18 Colodrero, S., Mihi, A., Häggman, L., Ocaña, M., Boschloo, G., Hagfeldt, A., Míguez, H., Advanced Materials 21, 764 (2009)10.1002/adma.200703115CrossRefGoogle Scholar
19 Calvo, M.E., Sánchez-Sobrado, O., Lozano, G., Míguez, H. J. Mat. Chem. 19, 3144 (2009)10.1039/b902090jCrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoparticle Based Multilayers as Multifunctional Optical Coatings
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoparticle Based Multilayers as Multifunctional Optical Coatings
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoparticle Based Multilayers as Multifunctional Optical Coatings
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *