Skip to main content Accessibility help
×
Home

Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy

Published online by Cambridge University Press:  01 February 2011

O.M. Barabash
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
J.A. Horton
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
S.S. Babu
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
J.M. Vitek
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
S.A. David
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
G.E. Ice
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
R.I. Barabash
Affiliation:
Metals and Ceramics Div., Oak Ridge National Laboratory, Oak Ridge, TN
Get access

Abstract

Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the γ' – phase particles during heating and secondary precipitation of γ' – phase during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, γ' - phase particles dissolve completely and reprecipitate from the solid solution in the form of very small (50-70nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the ã matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with typical Burgers vector b=[110]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Dye, D., Hunziker, O., Roberts, S.M., and Reed, R.C., Metallurgical and Mater. Trans. A, 32, (2001) 17131725 CrossRefGoogle Scholar
2 Barabash, O., Babu, S., David, S., Vitek, J., Barabash, R., J. Appl. Physics, 93, 13, (2003).Google Scholar
3 Park, J.-W., Vitek, J.M., Babu, S.S., David, S.A.. Submitted to Science and Technology of Welding and JoiningGoogle Scholar
4 Larson, B.C., Yang, Wenge, Ice, G.E., Budai, J.D., Tischler, J.Z., Nature, 415, 887, (2002).CrossRefGoogle Scholar
5 Barabash, R., Ice, G.E., Walker, F., J. Appl. Physics, 93, 3, 14571464 (2003)CrossRefGoogle Scholar
6ABAQUS, ver.6.3-1, HKS. 2003Google Scholar
7 Dye, D., Hunziker, O., Reed, R.C., Metallurgical and Materials Transaction A, 2001, 32A, p17131725 CrossRefGoogle Scholar
8 Sundman, B., Jansson, B. and Andersson, J-O., “The ThermoCalc Database System”, Calphad, 9, 1985, 153190 CrossRefGoogle Scholar
9 , Ni-DATA, v.5, Saunders, N., ThermoTech Ltd., Surrey Technology Centre, 40 Occam Road, GuildfordGU2 5YH, United Kingdom, (2001)Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-zjqt5 Total loading time: 0.215 Render date: 2021-01-17T13:57:15.884Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 13:54:25 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *