Skip to main content Accessibility help
×
Home

Monoenergetic Positron Beam Studies of Oxygen in Single Crystal Silicon - Stress Induced Clustering of Oxygen Atoms in Silicon

Published online by Cambridge University Press:  03 September 2012

R. Nagai
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185, Japan
E. Takeda
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185, Japan
Y. Tabuki
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1, Tennoudai, Tsukuba-shi, Ibaraki 305, Japan
L. Wei
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1, Tennoudai, Tsukuba-shi, Ibaraki 305, Japan
S. Tanigawa
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1, Tennoudai, Tsukuba-shi, Ibaraki 305, Japan
Get access

Abstract

A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski (CZ)-grown Si with either thermally grown S1O2 (100 nm thick) or silicon oxide (p-SiOx) deposited by plasma enhanced chemical vaper deposition technique on the surface. Both the growth of thermal SiO2 and the deposition of SiOx film resulted in a reduction of the doppler-broadening line shape parameter (S-parameter) for the positron annihilation in the bulk silicon region. Annealing at 450δC, the removal of oxide overlayer or long-term aging at room temperature caused the S-parameter to return to its intrinsic value. It was thought that tensile stress in silicon, induced by the thermal oxidation or the deposition of SiOx films which had compressive internal stress themselves, enhanced the rearrangement of oxygen atoms and caused the formation of oxygen clusters in silicon crystal. Oxygen interstitial clusters can trap positrons leading to the lower S-parameter value for annihilation in the bulk silicon region, because of large overlap with core electrons. The above results suggest that oxygen atoms can absorb lattice strain by clustering and thus prevent the generation of dislocations against external stress in the Si lattice. This results yield an additional explanation of the high mechanical strength of CZ Si crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Spenke, E. and Heywang, W., Phys. Stat. Sol. (a), 64, 11 (1981).CrossRefGoogle Scholar
2. Elwell, D., Prog. Cryst. Growth Charact., 4, 297 (1981).CrossRefGoogle Scholar
3. Hu, S. M. and Patrick, W. J., J. Appl. Phys.,46, 1869. (1975)CrossRefGoogle Scholar
4. Hu, S. M., Appl. Phys. Lett., 31, 53 (1977).CrossRefGoogle Scholar
5. Kaiser, W., Frisch, H. L. and Reiss, H., Phys. Rev., 112, 1546 (1958).CrossRefGoogle Scholar
6. Tice, W. K. and Tan, T. Y., Appl. Phys. Lett., 28, 564 (1976).CrossRefGoogle Scholar
7. Tsuya, H., Ogawa, K. and Shimura, F., Jpn. J. Appl. Phys., 20, L31 (1981).CrossRefGoogle Scholar
8. Peibst, H. and Raidt, H., Phys. Stat. Sol. (a), 68, 253 (1981).CrossRefGoogle Scholar
9. Dannefare, S. and Kerr, D., J. Appl. Phys., 60, 1313 (1986)CrossRefGoogle Scholar
10. Dannefaer, S., Phys. Stat. Sol. (a), 102, 481 (1987).CrossRefGoogle Scholar
11. Tanigawa, S., Watanabe, K., Kurihara, T. and Kubota, T., in Defect Control in Semiconductors, edited by Sumino, K. (Elsevier Science Publishers B. V., North-Holland, 1990) p. 1593.Google Scholar
12. Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys., 60, 701 (1988).CrossRefGoogle Scholar
13. West, R. N., in Positron in Solids, edited by Hautojarvi, P. (Springer, Berlin, 1979) p. 91.Google Scholar
14. Tanigawa, S., Iwase, Y., Uedono, A. and Sakairi, H., J. Nucl. Mater, 133&134, 463 (1985).CrossRefGoogle Scholar
15. Mills, A. P. Jr, and Wilson, R. J., Phys. Rev., A26, 90 (1982).Google Scholar
16. Nielsen, B., Lynn, K. G., Chan, Y. C and Welch, D. O., Appl. Phys. Lett.,, 51, 1022 (1987).CrossRefGoogle Scholar
17. Nielsen, B., Lynn, K. G., Leung, T. C., Welch, D. O. and Rubloff, G. W., Proc. Mater. Res. Soc., 105, 241 (1988).CrossRefGoogle Scholar
18. Uedono, A., Tanigawa, S. and Ohji, Y., Phys. Lett., A133, 82 (1988).CrossRefGoogle Scholar
19. Uedono, A., Tanigawa, S., Suzuki, K. and Watanabe, W., J. Appl. Phys. Lett., 53, 473 (1988).CrossRefGoogle Scholar
20. Wei, L., Tabuki, Y., Kondo, H., Tanigawa, S., Nagai, R. and Takeda, E., J. Appl. Phys., 70, Dec. 15 issue (in press).Google Scholar
21. Lynn, K. G., Chen, D. M., Nielsen, B., Pareja, R. and Myers, S., Phys. Rev,. B34, 1449 (1986).CrossRefGoogle Scholar
22. Triftshauser, W. and Kogel, G., Phys. Rev. Lett., 48, 1741 (1982).CrossRefGoogle Scholar
23. Saito, M. and Oshiyama, A., Phys. Rev., B38, 10711 (1988).CrossRefGoogle Scholar
24. Dannefaer, S., Mascher, P. and Kerr, D., Phys. Rev. Lett., 56, 2159 (1986).CrossRefGoogle Scholar
25. Kaiser, W., Phys. Rev., 105, 1751 (1957).CrossRefGoogle Scholar
26. Snoek, J. L., Physica, 6, 591 (1938).CrossRefGoogle Scholar
27. Bond, W. L., Kaiser, W., J. Phys. Chem. Solids, 16, 44 (1960).CrossRefGoogle Scholar
28. Rosencher, E., Staboni, A., Rigo, S. and Amsel, G., Appl. Phys. Lett., 34, 254 (1979).CrossRefGoogle Scholar
29. Cristy, S. S. and Condon, J. B., J. Electrochem. Soc., 128, 2170 (1981).CrossRefGoogle Scholar
30. Gosele, U., Tan, T. Y., Appl. Phys., A28, 79 (1982).CrossRefGoogle Scholar
31. Logan, R. A. and Peters, A. J., J. Appl. Phys., 30, 1627 (1959).CrossRefGoogle Scholar
32. Gaworzewski, P. and Ritter, G., Phys. Stat. Sol. (a), 67, 511 (1981).CrossRefGoogle Scholar
33. Iren, E. A., Tiemey, E. and Angiello, J., J. Electrochem. Soc., 129, 2594 (1982).CrossRefGoogle Scholar
34. Girfalco, L. A. and Welch, D. C, Point Defects and Diffision in Stained Metales (Gordon & Breach, New York 1967).Google Scholar
35. Mack, L. M., Reisman, A. and Bhattacharya, P. K., J. Electrochem. Soc., 136, 3433 (1989).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kfxvk Total loading time: 0.203 Render date: 2021-01-23T21:37:59.842Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Monoenergetic Positron Beam Studies of Oxygen in Single Crystal Silicon - Stress Induced Clustering of Oxygen Atoms in Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Monoenergetic Positron Beam Studies of Oxygen in Single Crystal Silicon - Stress Induced Clustering of Oxygen Atoms in Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Monoenergetic Positron Beam Studies of Oxygen in Single Crystal Silicon - Stress Induced Clustering of Oxygen Atoms in Silicon
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *