Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T23:39:00.105Z Has data issue: false hasContentIssue false

Modeling of Coarsening Processes In Patterned Systems

Published online by Cambridge University Press:  26 February 2011

Mark Jhon
Affiliation:
mj2k@berkeley.edu, University of California at Berkeley, Materials Science and Engineering, 210 Hearst Memorial Mining Building, Berkeley, CA, 94720-1760, United States, 510 642-8484
Andreas M Glaeser
Affiliation:
aglaeser@sapphire.berkeley.edu, University of California at Berkeley and Lawrence Berkeley National Laboratory, Materials Science and Engineering, United States
Daryl C Chrzan
Affiliation:
dcchrzan@berkeley.edu, University of California at Berkeley and Lawrence Berkeley National Laboratory, Materials Science and Engineering, United States
Get access

Abstract

Although particle coarsening has been studied for over a century, it remains an active area of materials science research. The current work presents a theoretical analysis of the degradation of regular arrays of spherical particles through diffusional interaction. In order to understand the onset of coarsening, a linear stability analysis is performed on a simple square lattice of particles. It is predicted that particles will dissolve in a spatially ordered manner. The active transport mechanism plays a strong role in the selection of the coherent growth modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lifshitz, I. M. and Slyosov, V. V., J. Phys. Chem. Solids 19, 35 (1956).Google Scholar
2. Wagner, C., Z. Elektrochem 65, 581 (1961).Google Scholar
3. Brailsford, A. D. and Wynblatt, P., Act Metall. 27, 489 (1979).Google Scholar
5. Marquess, J. A. and Ross, J., J. Chem. Phys. 80, 536 (1984).Google Scholar
6. Snyder, V. A., Alkemper, J., and Voorhees, P. W., Acta Mat. 49, 699 (2001).Google Scholar
7. Viñals, J. and Mullins, W. W., J. Appl. Phys. 83, 621 (1998).Google Scholar
8. Rodel, J. and Glaeser, A. M., Materials Lett. 6, 351 (1988).Google Scholar
9. Cahn, J. W., Acta Met. 14, 1685 (1966).Google Scholar
10. Muller, S. C. and Ross, J., Phys, J.. Chem. A 107, 7997 (2003).Google Scholar
11. Aaron, H. B. and Kotler, G. R., Metall. Trans. 2, 393 (1971).Google Scholar
12. Hoyt, J. J., Acta Met. 39, 2091 (1991).Google Scholar
13. Weins, J. J. and Cahn, J. W., in Sintering and Related Phenomena, edited by Kuczynski, G. C. (Plenum, New York, 1973), p. 151.Google Scholar
14. Voorhees, P. W. and Glicksman, M. E., Acta metall. 32, 2001 (1984).Google Scholar
15. Voorhees, P. W., Stat, J.. Phys. 38, 231 (1985).Google Scholar
16. Born, M. and Bradburn, M., Proc. of the Cambridge Phys. Soc. 39, 104 (1943).Google Scholar
17. Lee, M. H. and Bagchi, A., Phys. Rev. B 22, 2645 (1980).Google Scholar
18. Reiss, S. and Heinig, K. H., Nucl. Instr. and Meth. in Phys. Res. B 84, 229 (1994).Google Scholar
19. Theis, W., Bartelt, N. C., and Tromp, R. M., Phys. Rev. Lett. 75, 3328 (1995).Google Scholar
20. Morgenstern, K., Rosenfeld, G., and Comsa, G., Surf. Sci. 441, 289 (1999).Google Scholar
21. Zheng, X. and Bigot, B., J. Phys. II (France) 4, 743 (1994).Google Scholar