Skip to main content Accessibility help
×
Home

Microwave Processing of Polymer Composites

Published online by Cambridge University Press:  15 February 2011

Martin C. Hawley
Affiliation:
Department of Chemical Engineering, Michigan State University, E.Lansing, MI 48824.
Jianghua Wei
Affiliation:
Department of Chemical Engineering, Michigan State University, E.Lansing, MI 48824.
Valerie Adegbite
Affiliation:
Department of Chemical Engineering, Michigan State University, E.Lansing, MI 48824.
Get access

Abstract

Microwave processing has been investigated as an alternative to conventional thermal method in processing polymer matrix composite materials. The main advantages of microwave processing over thermal processing are that: 1) microwave heating is volumetric, direct, selective, instantaneous, and controllable which offers advantages such as fast heating and minimization of temperature excursion; 2) microwave radiation can provide many desirable features in polymer and composite processing, such as enhanced polymerization rates and glass transition temperatures of thermosets, improved mechanical properties of composite materials, and increased adhesion between graphite fibers and matrix.

Microwave heating has been used in food processing, drying, material processing, waste treatment, and organic synthesis. This paper summarizes the current status of microwave technology for the processing of polymer matrix composite materials. The discussion will be focused on the use and development of batch and continuous techniques using tunable single mode resonant microwave cavities for processing polymer composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Chabinsky, I. J., MRS Svmp. Proc., 124. 17, (1988).CrossRefGoogle Scholar
2. Nelson, S.O., J. Microwave Power and Electromagnetic Energy, 20 (2), 65 (1985).CrossRefGoogle Scholar
3. Vetsuypens, J.P. and Van Loock, W., J.Microwave Power and Electromagnetic Energy, 21 (2), 110 (1986).Google Scholar
4. Lightsey, G., George, C., Wehr, A., and Bharat, G., J.Microwave Power and Electromagnetic Energy, 23. (1), 11 (1988).CrossRefGoogle Scholar
5. Thiebaut, J.M., Akyel, C., and Roussy, G., IEEE Trans. Instrum. Meas., 37(1), 114 (1988).CrossRefGoogle Scholar
6. Lightsey, G., George, C., and Russell, L.D., J. Microwave Power and Electromagnetic Energy, p. 86, (1986).Google Scholar
7. Lewis, D.A., MRS Svmp. Proc, 269, 21 (1992).CrossRefGoogle Scholar
8. Wei, J., Jow, J., DeLong, J.D., and Hawley, M.C., SAMPE Journal, 27 (1), 33 (1991).Google Scholar
9. DeMeuse, M.T., Polvm. Mater. Sci. Eng., 66, 428 (1992).Google Scholar
10. Lee, W.I. and Springer, G.S., J.Composite Materials, 18 (4), 357 (1984).CrossRefGoogle Scholar
11. Wei, J., Chang, Y., Thomas, Y., and Hawley, M.C., Proceeding of ICCM/VIII, 1, 10–L (1991).Google Scholar
12. Agrawal, R. and Drzal, L. T., J. Adhesion, 29, 63 (1989).CrossRefGoogle Scholar
13. Wei, J., DeLong, J.D., DeMeuse, M., and Hawley, M.C., Polym. Eng. & Sci. 33 (17), 1132 (1993).CrossRefGoogle Scholar
14. Hawley, M.C. and Wei, J., MRS Svmp. Proc., 189, 413 (1990).CrossRefGoogle Scholar
15. Gourdenne, A., Proceedings, International Conference on reactive Processing of Polymers, p. 23, (1982).Google Scholar
16. Jow, J., DeLong, J., and Hawley, M. C, SAMPE Quart., 20 (2), 46 (1989).Google Scholar
17. Lewis, D. A., Hedrick, J. C., Ward, T. C and McGrath, J. E., Polymer Preprint. 28.(2), 330, (1987).Google Scholar
18. Gourdenne, A. and Van, Le Q., Polymer Preprints, 22, 125 (1981)Google Scholar
19. Jow, J., Hawley, M. C., Finzel, M. and Kern, T., Polym. Eng. Sci., 28. (22), 1450 (1988).CrossRefGoogle Scholar
20. Jullien, H. and Valot, H., Polymer, 26, 506 (1985).CrossRefGoogle Scholar
21. Sutton, W.H., MRS Svmp. Proc, 269, 3 (1992).CrossRefGoogle Scholar
22. Bruce, R., MRS Svmp. Proc, 124, 3 (1988).CrossRefGoogle Scholar
23. Gault, T.W. and Wilson, J.B., J.Microwave Power and Electromagnetic Energy, 22.(3), 179 (1987).Google Scholar
24. Dauerman, L., Windgasse, G., Gu, H., Ibrahim, N., and Sedhom, E.H., MRS Svmp. Proc., 189, 61 (1990).CrossRefGoogle Scholar
25. Suzuki, J., et. al, J.Microwave Power and Electromagnetic Energy, 25 (3), 168 (1990).CrossRefGoogle Scholar
26. Oda, S.J., MRS Svmp. Proc, 269, 453 (1992).CrossRefGoogle Scholar
27. Giguere, R.J., MRS Svmp. Proc, 269, 387 (1992).CrossRefGoogle Scholar
28. Asmussen, J., Lin, H.H., Manring, B., and Fritz, R., Rev. Sci. Instrum., 58 (8), 1477 (1987).CrossRefGoogle Scholar
29. Amano, M. and Koichi, N., Polvm. Commun., 28 (4), 119 (1987).Google Scholar
30. Takeuchi, Y., Nakagawa, K., and Yamamoto, F., Polymer, 26 (13), 1929 (1985).CrossRefGoogle Scholar
31. Chen, M., Hellgeth, J.W., Siochi, E. J., Ward, T.C., and McGrath, J., Polvm. Eng. Sci., 33 (17), 1122 (1993).CrossRefGoogle Scholar
32. DeMeuse, M.T., Proceedings of the American Chemical Society Spring Meeting, 66. 428 (1992).Google Scholar
33. Falconer-Flint, M.J., Aust. Plast. Rubber, 24 (11), 33 (1973).Google Scholar
34. Grigor'ev, A.N. and Bass, Y. P., Chemical and Petroleum Engineering (English translation of Khimicheskoe i Neftyanoe Mashinostroenie), 22 Nov-Dec, 535538 (1986).Google Scholar
35. Krieger, B., Proceedings of the American Chemical Society Spring Meeting, 66. 339 (1992).Google Scholar
36. Strand, N.S., Modern Plastics, (56), 64 (1980).Google Scholar
37. Hedrick, J.C., Lewis, D.A., Ward, T.C., McGrath, J.E., MRS Svmp. Proc, 189, 421 (1991).CrossRefGoogle Scholar
38. Wei, J., Hawley, M. C., and DeMeuse, M. T., Polymer Eng. & Sci., (in press).Google Scholar
39. Gillham, J.K., in Dawkins, J.V., Ed., Developments in Polymer Characterization -3, Applied Science Publisher, London, U.K., p. 159 (1982).CrossRefGoogle Scholar
40. Fellows, L. A., Adegbite, V.O., and Hawley, M. C., AIChE National Summer Meeting, Seattle, WA, August 15–18, 1993.Google Scholar
41. Outifa, L., Jullien, H., and Delmotte, M., Proceedings of the American Chemical Society Spring Meeting, 66, 424 (1992).Google Scholar
42. Boey, F.Y.C., Proceeding of 23rd International SAMPE Conference, p. 15 (1991).Google Scholar
43. Ghaffariyan, S.R., Methven, J.M., Mater. Res. Soc. Symp. Proc., 189, 135 (1991).CrossRefGoogle Scholar
44. Methven, J.M. and Ghaffariyan, S.R., Proceedings of the American Chemical Society Spring Meeting, 66, 389 (1992).Google Scholar
45. Ippen, J., Rubber Chem. Technol., 44(1), 294 (1971).CrossRefGoogle Scholar
46. Wang, C.S., Rubber Chem. Technol., 57 (1), 134 (1984).CrossRefGoogle Scholar
47. VanKoughnett, A.L. and Dunn, J.G., J. Microwave Power and Electromagnetic Energy, 8(1), 101 (1973).CrossRefGoogle Scholar
48. Stensland, L. and Gustafsson, P., Ericsson Review (English Edition), 65 (4), 152 (1988).Google Scholar
49. Wei, J., Thomas, B., and Hawley, M. C., ANTEC′92 Conf. Proc, 1170 (1992).Google Scholar
50. Lin, M. and Hawley, M. C., 38th SAMPE Symposium and Exhibition, Anaheim, CA, May, (1993).Google Scholar
51. Manring, Ben, Ph.D. thesis, Michigan State University, (1992).Google Scholar
52. Jia, X. and Jolly, P., International Microwave Power Institute, 27 (1), 11 (1992).Google Scholar
53. Lee, W.I., Springer, G.S., J. Compos. Mater., 18 (4), 387 (1984).CrossRefGoogle Scholar
54. Wei, J., Hawley, M., and Asmussen, J., J.Microwave Power and Electromagnetic Energy, 28 (4), 234 (1993).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-qmqs2 Total loading time: 0.263 Render date: 2021-01-17T19:51:40.003Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 19:03:22 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microwave Processing of Polymer Composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microwave Processing of Polymer Composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microwave Processing of Polymer Composites
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *