Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T03:57:18.872Z Has data issue: false hasContentIssue false

Microstructures and Mechanical Behavior of Nb-Ti Base Beta + Silicide Alloys

Published online by Cambridge University Press:  25 February 2011

P. R. Subramanian
Affiliation:
Materials Research Division, UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432.
M. G. Mendiratta
Affiliation:
Materials Research Division, UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432.
D. M. Dimiduk
Affiliation:
Wright Laboratory, WL/MLLM, Wright-Patterson AFB, OH 45433.
Get access

Abstract

Studies on Nb/Nb5Si3 based in-situ composites have demonstrated an acceptable balance of low-temperature damage tolerance and high-temperature strength/creep resistance. However, catastrophic oxidation and embrittlement of these materials limit their usefulness in structural applications. Alloying studies were initiated at Wright Laboratory with the aim of obtaining incremental improvement in the overall oxidation response of the Nb/Nb5Si3 system, while seeking microstructurally similar systems. The results showed that reduced metal recession rates and oxygen embrittlement can be obtained by Ti and Al additions to Nb-Si base alloys. This paper focuses on the effect of Ti and Al alloying additions to Nb-Si base alloys on phase equilibria, microstructures, temperature dependence of strength, low-temperature toughness, and environmental resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mendiratta, M. G., Lewandowski, J. J., and Dimiduk, D. M., Metall. Trans. A, 22A, 1573 (1991).Google Scholar
2. Rigney, J. D., Lewandowski, J. J., Matson, L., Mendiratta, M. G., and Dimiduk, D. M., in High-Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., Steigler, J. O., and Pope, D. P. (Mater. Res. Soc. Proc., 213, Pittsburgh, PA, 1991) pp. 10011006.Google Scholar
3. Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd Ed. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 3367.Google Scholar
4. Banerjee, D., Gogia, A. K., Nandy, T. K., Muraleedharan, K., and Mishra, R. S., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V., (TMS, Warrendale, PA, 1993), pp. 1933.Google Scholar
5. Thirukkonda, M., Weiss, I., and Srinivasan, R., Wright State University (private communication).Google Scholar
6. Jackson, M. R. and Jones, K. D., in Refractory Metals: Extraction. Processing and Applications, edited by Liddell, K. C., Sadoway, D. R., and Bautista, R. G. (TMS, Warrendale, PA, 1990), pp. 311320.Google Scholar
7. Mendiratta, M. G. and Dimiduk, D. M., Metall. Trans. A, 24A, 501 (1993).CrossRefGoogle Scholar
8. Flinn, B. D., Ruhle, M., and Evans, A. G., Acta Metall., 37, 3001 (1989).Google Scholar
9. Mataga, P. A., Acta Metall., 12, 3349 (1989).CrossRefGoogle Scholar
10. Nekkanti, R. K. and Dimiduk, D. M., in Intermetallic Matrix Composites, edited by Anton, D. L., McMeeking, R., Miracle, D., and Martin, P. (Mater. Res. Soc. Proc., 194, Pittsburgh, PA, 1990), pp. 175182.Google Scholar
11. Tabor, D., Hardness in Metals, (Clarenden Press, London, 1951).Google Scholar