Hostname: page-component-7d684dbfc8-hffkp Total loading time: 0 Render date: 2023-09-25T17:52:02.529Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Microstructure Evolution in Deformed Copper and Nickel

Published online by Cambridge University Press:  01 February 2011

Peri Landau
Affiliation:
landaup@bgu.ac.il, Ben- Gurion University, Materials Engineering, 5 Dekel street, Reut, 71908, Israel
Roni Z. Shneck
Affiliation:
roni@bgu.ac.il, Ben- Gurion University, Materials Engineering, P.O.Box 653, Beer Sheva, 84105, Israel
Guy Makov
Affiliation:
makovg@bgu.ac.il, NRCN, Department of Physics, Beer Sheva, 84190, Israel
Arie Venkert
Affiliation:
venkert@bgu.ac.il, NRCN, Department of Physics, Beer Sheva, 84190, Israel
Get access

Abstract

The combined effect of strain and temperature on the microstructure and detailed internal structure of dislocation boundaries was systematically studied in compressed pure polycrystalline copper and nickel and compared to the microstructure of compressed polycrystalline aluminum. Below 0.5Tm the microstructure of Cu and Ni consists of dislocation cells, however, only in Cu second generation microbands are formed. In Cu and Ni, the dislocations inside the boundaries rearrange themselves from tangles to ordered arrays of parallel dislocations following interplay between strain (requirement for cross slip) and temperature (dislocation mobility and ease of cross slip). The ordered detailed structure is similar to that observed in Al deformed at room temperature and lower strain levels. The amount of strain and temperature applied to Cu and Ni in order to achieve the same detailed structure formed in Al depends on the stacking fault energy (SFE) of the metal- higher strain and temperature as the SFE is lower.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hansen, N. and Jensen, D. J., Phil. Trans. R. Soc. Lond. A357, 1447 (1999).CrossRefGoogle Scholar
2. Bay, B., Hansen, N., Hughes, D. A. and Kuhlmann- Wilsdorf, D., Acta Metall. Mater. 40, 205 (1992).CrossRefGoogle Scholar
3. Swann, P. R., ”Dislocation Arrangements in Face- Centered Cubic Metals and Alloys”, Electron Microscopy and Strength of Crystals, eds. Thomas, G. and Washburn, J., (Interscience NY 1963) pp. 131 Google Scholar
4. Hansen, N., Scri. Metall. Mater. 27, 1447 (1992).CrossRefGoogle Scholar
5. Hansen, N., Mat. Sci. Tech. 6, 1039 (1990).CrossRefGoogle Scholar
6. Hatherly, M., Scrip. Metall. Mater. 27, 1453(1992).CrossRefGoogle Scholar
7. Barker, I., Hansen, N., Ralph, B., Mat. Sci. Eng. A 113, 449 (1989).CrossRefGoogle Scholar
8. Hughes, D. A., Mat. Sci. Eng. A 319–321, 46 (2001).CrossRefGoogle Scholar
9. Malin, A. S. and Hatherly, M., Met. Sci. 13, 463 (1979).CrossRefGoogle Scholar
10. Huang, J. C. and Gray III, G. T., Acta Metall. 37, 3335 (1989).CrossRefGoogle Scholar
11. Hansen, N., Huang, X. and Hughes, D. A., Mat. Sci. Eng. A 317, 3 (2001).CrossRefGoogle Scholar
12. Hughes, D. A. and Hansen, N., Mat. Sci. Tech. 7, 544 (1991).CrossRefGoogle Scholar
13. Gan, J., Vetrano, J. S. and Khaleel, M. A., J. Eng. Mat. Tech. 124, 297 (2002).CrossRefGoogle Scholar
14. Landau P, P., M.Sc thesis, Ben-Gurion University, Israel (2005).Google Scholar
15. Caillard, D. and Martin, J. L., Acta Metall. 30, 437 (1982).CrossRefGoogle Scholar
16. Anongba, P. N. B., Bonneville, J. and Martin, J.L., Acta Metall. Mater. 41, 2897 (1993).CrossRefGoogle Scholar
17. Anongba, P. N. B., Bonneville, J. and Martin, J.L., Acta Metall. Mater. 41, 2907 (1993).CrossRefGoogle Scholar
18. Straub, S., Blum, W., Maier, H.J., Unger, T., Borbely, A. and Renner, H., Acta Mater. 44, 4337 (1996).CrossRefGoogle Scholar
19. Hughes, D. A. and Nix, W. D., Mat. Sci. Eng. A 122, 153 (1989).CrossRefGoogle Scholar
20. Park, N. K. and Parker, B. A., Mat. Sci. Eng. A 113, 431 (1989).CrossRefGoogle Scholar
21. Kim, Y. W. and Bourell, D. L., Metal. Trans. A 19A, 2041 (1988).CrossRefGoogle Scholar
22. Hughes, D. A. and Nix, W. D., Metall. Trans. A 19A, 3013 (1988).CrossRefGoogle Scholar
23. Belyakov, A., Sakai, T., Miura, H. and Tsuzaki, K., Phil. Mag. A 81, 2629 (2001).CrossRefGoogle Scholar
24. Huang, X., Scrip. Mater. 38, 1697 (1998).CrossRefGoogle Scholar
25. Huang, X., Borrego, A., Pantleon, W., Mat. Sci. Eng. A 319–321, 237 (2001).CrossRefGoogle Scholar