Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bmnx5 Total loading time: 0.329 Render date: 2021-04-17T21:16:04.771Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Microstructure and Thermophysical Characterization of Mixed Oxide Fuels

Published online by Cambridge University Press:  31 January 2011

Franz J. Freibert
Affiliation:
freibert@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Tarik A. Saleh
Affiliation:
tsaleh@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Fred G. Hampel
Affiliation:
fhampel@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Daniel S. Schwartz
Affiliation:
dschwartz@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Jeremy N. Mitchell
Affiliation:
jeremy@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Charles C. Davis
Affiliation:
ccdavis@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Angelique D. Neuman
Affiliation:
neuman@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Stephen P. Willson
Affiliation:
willson@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
John T. Dunwoody
Affiliation:
dunwoody@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Get access

Abstract

Pre-irradiated thermodynamic and microstructural properties of nuclear fuels form the necessary set of data against which to gauge fuel performance and irradiation damage evolution. This paper summarizes recent efforts in mixed-oxide and minor actinide-bearing mixed-oxide ceramic fuels fabrication and characterization at Los Alamos National Laboratory. Ceramic fuels (U1-x-y-zPuxAmyNpz)O2 fabricated in the compositional ranges of 0.19≤x≤0.3 Pu, 0≤y≤0.05 Am, and 0≤z≤0.03 Np exhibited a uniform crystalline face-centered cubic phase with an average grain size of 14μm; however, electron microprobe analysis revealed segregation of NpO2 in minor actinide-bearing fuels. Immersion density and porosity analysis demonstrated an average density of 92.4% theoretical for mixed-oxide fuels and an average density of 89.5% theoretical density for minor actinide-bearing mixed-oxide fuels. Examined fuels exhibited mean thermal expansion value of 12.56×10−6/°C-1 for temperature range (100°C<T<1500°C) and ambient temperature Young's modulus and Poisson's ratio of 169 GPa and of 0.327, respectively. Internal dissipation as determined from mechanical resonances of these ceramic fuels has shown promise as a tool to gauge microstructural integrity and to interrogate fundamental properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Markin, T.L. and Street, R.S. J. Inorg. Nuc. Chem. 29, 2265(1967).CrossRefGoogle Scholar
2. Freibert, F.J. Mitchell, J.N. Saleh, T.A. Schwartz, D.S. “Thermophysical Properties of Coexistent Phases in Plutonium”; accepted for publication in the IOP Conf. Series: Materials Science and Engineering(2009); Los Alamos National Laboratory Publication. No. LAUR-09-00291(2009).Google Scholar
3. Güldner, R. and Schmidt, H. J. Nucl. Mater. 178, 152(1991).CrossRefGoogle Scholar
4. Freibert, F.J. Dooley, D. Miller, D. Los Alamos National Laboratory Publication No. LAUR-05-9007, 2005.Google Scholar
5. Migliori, A. Baiardo, J.P. Darling, T.W. and Freibert, F.J. in Experimental Methods in the Physical Sciences: Modern Acoustical Techniques for the Measurement of Mechanical Properties 39, edited by Levy, M. Bass, H.E. and Stern, R. (Academic Press, San Diego, 2001) p. 189.Google Scholar
6. Migliori, A. Pantea, C. Ledbetter, H. Stroe, I. Betts, J.B. Mitchell, J.N. Ramos, M. Freibert, F.J. Dooley, D. Harrington, S. Mielke, C.H. JASA 122, 1994(2007).CrossRefGoogle Scholar
7. Mitchell, J.N. Freibert, F.J. Schwartz, D.S. and Bange, M.E. J. Nuc. Mat. 385, 95(2009).CrossRefGoogle Scholar
8.Theoretical density data derived from lattice constants published by Skavdahl, R.E. and Chikalla, T.D. in Plutonium Handbook: A Guide to the Technology, Vol I and II, edited by Wick, O.J. (American Nuclear Society, La Grange Park, Illinois, 1980), p. 261.Google Scholar
9. Padel, A. and Novion, Ch. de, J. Nucl. Mater. 33, 40(1969).CrossRefGoogle Scholar
10. Nutt, A.W. Allen, A.W. and Handwerk, J.H. J. Am. Ceram. Soc. 53, 205(1970).CrossRefGoogle Scholar
11. Martin, D.G. J. Nuc. Mat. 152, 94(1988).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructure and Thermophysical Characterization of Mixed Oxide Fuels
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microstructure and Thermophysical Characterization of Mixed Oxide Fuels
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microstructure and Thermophysical Characterization of Mixed Oxide Fuels
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *