Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.398 Render date: 2021-02-26T07:28:26.358Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles

Published online by Cambridge University Press:  17 March 2011

Xiang-Cheng Sun
Affiliation:
Prog. Molecular Engineer, Instituto Mexicano del Petróleo (IMP), Central Lázaro Cárdenas 152, 07730, D. F. México
N. Nava
Affiliation:
Prog. Molecular Engineer, Instituto Mexicano del Petróleo (IMP), Central Lázaro Cárdenas 152, 07730, D. F. México
J. Reyes-Gasga
Affiliation:
Institute of Physics, National University of Mexico, D.F. México
Get access

Abstract

Two types of iron (Fe) nanoparticles, carbon-coated Fe nanoparticles (Fe(C)) and pure α-Fe nanoparticles that coated with oxide layers (Fe(O)), have been successfully synthesized using modified graphite arc-discharge method. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HREM) and electron diffraction (SAED) analysis have been used to characterize these distinct structural morphologies. It is indicated that those two Fe nanoparticles have an average grain size of 15-20nm. The presence of carbon encapsulated α-Fe, γ-Fe and Fe3C phases are clearly identified by X-ray diffraction and SAED patterns in those Fe(C) particles. However, the evidence of pure α-Fe nanocrystal coated with oxide layer is also revealed by HR-TEM images and SAED patterns in these Fe(O) particles.

Mössbauer spectra and hyperfine magnetic fields at room temperature for the assemblies of Fe(C) and Fe(O) nanoparticles further confirm their distinct nanophases that detected by XRD analysis and HRTEM observation. Specially, the assemblies of Fe(O) nanoparticles exhibit ferromagnetic properties at room temperature due to the stronger interparticle interaction and bigger magnetocrystalline anisotropy effects among these Fe(O) nanoparticles. Moreover, modified superparamagnetic relaxation is observed in the assemblies of Fe(C) nanoparticles, which is attributed to the nanocrystalline nature of the carbon-coated nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Leslie-Pelecky, D. L. and Rieke, R.D., Chem. Mater. 8, 1770 (1996).CrossRefGoogle Scholar
2. Dorman, J. L. and Fiorani, D., (Eds.), Magnetic Properties of Fine Particles, (North-Holland, Amsterdam. 1992).Google Scholar
3. Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., O'Horo, M. P., Ganguly, B. N., Mehrotra, V., Russell, M.W. and Hufman, D.R., Science 257, 219 (1992).CrossRefGoogle Scholar
4. Awschalom, D. D. and DiVicenzo, D. P., Phys. Today 4, 43 (1995).CrossRefGoogle Scholar
5. McMichael, R. D., Shull, R. D., Swartzendruder, L. J., Bennett, L. H. and Wastson, R. E., J. Magn. Magn. Mater. 111, 29 (1992).CrossRefGoogle Scholar
6. Chen, Q. and Zhang, Z. J., Appl. Phys. Lett. 73, 3156 (1998).CrossRefGoogle Scholar
7. Zhang, X. X., Tejata, J., Hernandez, J. M. and Ziolo, R. F., Nanostruct. Mater. 9, 301 (1197).CrossRefGoogle Scholar
8. Gangopadhyay, S. and Hadjipanayis, G. C., J. Appl. Phys. 73, 6964 (1993).CrossRefGoogle Scholar
9. Hihara, T., Onodera, H., Sumiyama, K., Suzuki, K., Kasuya, A., Hishina, Y., Satio, Y., Yoshikawa, T. and Okuda, M., Jpn. J. Appl. Phys. 33, L24 (1994).CrossRefGoogle Scholar
10. McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M. and Staley, S. W., Phys. Rev. B49, 1135 (1994).Google Scholar
11. Dravid, V. P., Host, J. J., Teng, M. H., Elliott, D., Hwang, J., Johnson, D. L., Mason, T. O. and Weertman, J. R., Nature 374, 620 (1995).CrossRefGoogle Scholar
12. Jonsson, T., Svedlindh, P. and Hansen, M. F., Phys. Rev. Lett. 81, 3976 (1998).CrossRefGoogle Scholar
13. Hanson, M., Johansson, C., Pederson, M. S. and Morup, S., J. Phys: Conden. Matter. 7, 9269 (1995).Google Scholar
14. Fiorani, D., Dorman, J. L., Cherkaoui, R., Tronc, E., Lucari, F., D'Orazio, F., Spinu, L., Nogues, M., Garcia, A. and Testa, A. M., J. Magn. Magn. Mater. 196, 143 (1999).CrossRefGoogle Scholar
15. Fourgerot, F., Chevalier, B. and Etourneau, J., Physica B, 230/232, 256 (1997).CrossRefGoogle Scholar
16. Dong, X. L., Zhang, Z. D., Xiao, Q. F., Zhao, X. G., Chung, Y. C., Jin, S. R., Sun, W. M., Lin, Z. J., Zhang, Z. X. and Yang, H., J.Mater.Sci. 33, 1915 (1998).CrossRefGoogle Scholar
17. Sun, X. C., Gutierrez, A., Yacaman, M. J., Dong, X. L. and Jin, S. R., Mater. Sci. Eng. A286, 157 (2000).CrossRefGoogle Scholar
18. Sun, X. C., Dong, X. L. and Toledo, J. A., J. Nanosci. Nanotech. 1, 291 (2001).CrossRefGoogle Scholar
19. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A. and Nishina, Y., J. Phys. Chem. Solids, 54, 1849 (1993).CrossRefGoogle Scholar
20. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A. and Nishina, Y., Chem. Phys. Lett. 212, 379 (1993).CrossRefGoogle Scholar
21. Bi, X. X., Ganguly, B., Huffman, G. P., Huggins, F. E., Endo, M. and Eklund, P. C., J. Mater. Res. 8, 1666 (1993).CrossRefGoogle Scholar
22. Zhang, H., J. Phys. Chem. Solid, 60, 1845 (1999).CrossRefGoogle Scholar
23. Rechenberg, H. R., Coaquira, J. A. H., Marquina, C., Landa, B. G., Ibarra, M. R., Benito, A. M., Naser, W., Munoz, E. and Martinez, M. T., J. Magn. Magn. Mater. 226–230, 1930 (2001).CrossRefGoogle Scholar
24. Varanda, L. C., Jafelicci, M. J. and Goya, G. F., J. Magn. Magn. Mater. 226–230, 1933 (2001).CrossRefGoogle Scholar
25. Vijayakumar, R.. Koltypin, Y., Felner, I. and Gedanken, A., Mater. Sci. Eng. A286, 101 (2000).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *