Hostname: page-component-546b4f848f-sw5dq Total loading time: 0 Render date: 2023-06-04T11:00:57.549Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Microstructural Investigations of Hafnium Aluminum Oxide Films

Published online by Cambridge University Press:  01 February 2011

Doina Craciun
Affiliation:, NILPRP, Lasers, STR. ATOMISTILOR NR. 409, C.P. MG 35, MAGURELE, Bucharest, 077125, Romania, +40214574491
Gabriel Socol
Affiliation:, National Institute for Laser, Plasma and Radiation Physics, Bucharest, 077125, Romania
Emanuel Axente
Affiliation:, National Institute for Laser, Plasma and Radiation Physics, Bucharest, 077125, Romania
Aurelian-Catalin Galca
Affiliation:, National Institute of Materials Physics, Bucharest, 077125, Romania
Rajiv Singh
Affiliation:, University of Florida, Gainesville, FL, 32611, United States
Valentin Craciun
Affiliation:, National Institute for Laser, Plasma and Radiation Physics, Bucharest, 077125, Romania
Get access


The crystalline structure, composition, chemical bonding and thermal stability of HfO2-Al2O3 mixtures deposited on Si using a combinatorial pulsed laser deposition technique were investigated. After deposition some films were annealed at temperatures from 850 to 950 °C for 6 or 12 minutes. Grazing incidence x-ray diffraction investigations were performed to asses the crystallinity and thermal stability of the annealed layers. Measurements of the Al to Hf ratios were performed using energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. From simulations of the x-ray reflectivity and spectroscopic ellipsometry spectra the phase composition and thickness of the films was calculated and then the Al to Hf ratios. Al/Hf values of 1 and 8 were found to be necessary to block the crystallization of the films after anneals at 850 and 950 °C, respectively.

Research Article
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Wilk, G. D. Wallace, R. M. and Anthony, J. M. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
2. Kim, J. Kang, H. Choi, J. Jeon, H. Choi, M. K Chung, Back, S. Yoo, K. and Bae, C. J, Appl. Phys. 98, 094504 (2005).CrossRefGoogle Scholar
3. Stemmer, S. J. Vac. Sci. Technol. B 22, 791 (2004).CrossRefGoogle Scholar
4. Auciello, O. Fan, W. Kabius, B. Saha, S. Carlisle, J. A. R. Chang, P. H. Lopez, C. Irene, E. A. and Baragiola, R. A. Appl. Phys. Lett 86, 042904 (2005).CrossRefGoogle Scholar
5. Lee, P. F. Dai, J. Y. Wong, K. H. Chan, H. L. W. and Choy, C. L. Appl. Phys. Lett. 82, 2419 (2003).CrossRefGoogle Scholar
6. Curreem, K. K. S. Lee, P. F. and Dai, J. Y. Mat. Sci Semicon. Proc. 9, 940 (2006).CrossRefGoogle Scholar
7. Ramani, K. Kumar, P. Siebein, K. Craciun, V. and Singh, R. K. Electrochemical and Solid-State Letters 10, H66 (2007).CrossRefGoogle Scholar
8. Yang, Y. Zhum, WJ, Ma, TP, and Stemmer, S, J. Appl. Phys. 95, 3772 (2004).CrossRefGoogle Scholar
9. Ho, M. Y. Gong, H. Wilk, G. D. Busch, B. W. Green, M. L. Lin, W. H. See, A. Lahiri, S. K. Loomans, M. E. Raisanen, P. I. and Gustafsson, T. Appl. Phys. Lett. 81, 4218 (2002).CrossRefGoogle Scholar
10. Essary, C. R. Ramani, K. Craciun, V. and Singh, R. K. Appl. Phys. Lett. 88, 182902 (2006).CrossRefGoogle Scholar
11. Li, Q. SJ Wang, Ng, T. H. Chim, W. K. Huan, ACH, and Ong, C. K. Thin Solid Films 504, 45 (2006).CrossRefGoogle Scholar
12. Hasegawa, K. Ahmet, P. Okazaki, N. Hasegawa, T, Fujimoto, K, Watanabe, M, Chikyow, T, and Koinuma, H. Appl. Surf. Sci. 223, 229 (2004).CrossRefGoogle Scholar
13. Bassin, N. D. Schenck, P. K. Donev, E. U. Heilweil, E. J. Cockayne, E, Green, M. L. and Feldman, L. C. Appl. Surf. Sci. 254, 785 (2007).CrossRefGoogle Scholar
14. Bassim, N. D. Schenck, P. K. Otani, M. and Oguchi, H. Rev. Sci. Instrum. 78, 072203 (2007).CrossRefGoogle Scholar