Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-13T02:10:27.006Z Has data issue: false hasContentIssue false

Micropatterned Vertically Aligned Carbon Nanotube Growth on a Si Surface or inside Trenches for field-emission devices

Published online by Cambridge University Press:  15 March 2011

Jung Inn Sohn
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju, Korea 500-712
Seonghoon Lee
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju, Korea 500-712
Yoon-Ho Song
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350
Sung-Yool Choi
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350
Jin Ho Lee
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350
Young-Il Kang
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350
Get access

Abstract

The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio frequency amplifiers or field emission-controllable cold electron guns for field emission displays. This fabrication process is compatible with currently used semiconductor processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on planar Si surface or inside the trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. To control the field-emission current by a 3rd electrode, the gate electrode, we grew carbon nanotubes inside the trenches. This triode-type structure is the best to realize the gray-scale carbon nanotube field emission. This carbon nanotube fabrication process can be widely applied for the development of electronic devices using carbon nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices such as RF amplifiers and field emission displays.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Treachy, M.M., Ebbesen, T. W., and Gibson, J. M., Nature 381, 678 (1996).Google Scholar
2. Ruoff, R. S. and Lorents, D. C., Carbon 33, 925 (1995).Google Scholar
3. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1999), Chapt. 4.Google Scholar
4. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S. Science 286, 1127 (1999).Google Scholar
5. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).Google Scholar
6. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., Appl. Phys. Lett. 75, 3129 (1999).Google Scholar
7. Tans, S. J., Verschueren, A.R.M., Dekker, C., Nature 393, 49 (1998).Google Scholar
8. Brodie, I., Int. J. Electron. 38, 541 (1995).Google Scholar
9. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., Dai, H., Science 283, 512 (1999).Google Scholar
10. Sohn, J.-I., Lee, S.*, Song, Y.-H., Choi, S.-Y., Cho, K.-I., Nam, K.-S., Appl. Phys. Lett. 78, 901 (2001).Google Scholar
11. Spindt, C.A., Holland, C. E., Schwoebel, P. R., Brodie, I., Tech. Dig. of IVMC '97 200 (1997), Kyongju, Korea.Google Scholar
12. Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873 (1999).Google Scholar
13. Suh, J.-S., Lee, J.-S., Appl. Phys. Lett. 75, 2047 (1999).Google Scholar
14. Rao, A. M., Jacques, D., Haddon, R. C., Zhu, W., Bower, C., Jin, S., Appl. Phys. Lett. 76, 3813 (2000).Google Scholar
15. Heer, W. A. de, Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
16. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegel, M. P., Provencio, P. N., Science 282, 110 (1998).Google Scholar
17. Sohn, J.-I., Choi, C.-J., Lee, S., Seong, T.-Y., Appl. Phys. Lett. 78, 3130 (2001).Google Scholar
18. Gaskell, D. R., Introduction to the Thermodynamics of Materials (Taylor & Francis, Washington, D.C. 3rd Ed. 1995).Google Scholar