Skip to main content Accessibility help
×
Home

The “Micromorph” Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?

Published online by Cambridge University Press:  15 February 2011

H. Keppner
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
P. Torres
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Meier
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
R. Platz
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
D. Fischer
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
U. Kroll
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
S. Dubail
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. A. Anna Selvan
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
N. Pellaton Vaucher
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
Y. Ziegler
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
R. Tscharner
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
Ch. Hof
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
N. Beck
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
M. Goetz
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
P. Pernet
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
M. Goerlitzer
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
N. Wyrsch
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Veuille
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Cuperus
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
A. Shah
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Pohl
Affiliation:
University of Konstanz, D-78434 Konstanz, Germany
Get access

Abstract

In the past, microcrystalline silicon (μc-Si:H) has been successfully used as active semiconductor in entirely μc-Si:H p-i-n solar cells and a new type of tandem solar cell, called the “micromorph” cell, was introduced [1]. Micromorph cells consist of an amorphous silicon top cell and a microcrystalline bottom cell. In the paper a micromorph cell with a stable efficiency of 10.7 % (confirmed by ISE Freiburg) is reported.

Among sofar existing crystalline silicon-based solar cell manufacturing techniques, the application of microcrystalline silicon is a new promising way towards implementing thin-film silicon solar cells with a low temperature deposition. Microcrystalline silicon can, indeed, be deposited at temperatures as low as 220°C; hence, the way is here open to use cheap substrates as, e.g. plastic or glass. In the present paper, the development of single and tandem cells containing microcrystalline silicon is reviewed. As stated in previous publications, microcrystalline silicon technique has at present a severe drawback that has yet to be overcome: Its deposition rate for solar-grade material is about 2Å/s; in a more recent case 4.3 Å/s [2] could be obtained. In the present paper, using suitable mixtures of silane, hydrogen and argon, deposition rates of 9.4 Å/s are presented. Thereby the dominating plasma mechanism and the basic properties of resulting layers are described in detail. A first entirely microcrystalline cell deposited at 8.7 Å/s has an efficiency of 3.15%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Meier, J., Flückiger, R., Keppner, H., Shah, A., Appl. Phys. Lett., Vol. 65 (7), pp. 860862, 1994.CrossRefGoogle Scholar
2.Torres, P., Meier, J., Goetz, M., Beck, N., Kroll, U., Keppner, H., Shah, A., this conference.Google Scholar
3.Veprek, S. and Mareek, V., Solid State Electronics Nr. 11, p. 683, 1968.CrossRefGoogle Scholar
4.Wang, C. and Lucowsky, G., Proc. 21st IEEE Photovoltaic Specialists Conference, Orlando 1990, Vol. 2, pp 16141618.CrossRefGoogle Scholar
5.Faraj, M., Gokhale, S., Choudhari, S. M., and Takwale, M. G., Appl. Phys. Lett. 60, p. 3289, 1992.CrossRefGoogle Scholar
6.Flückiger, R., Meier, J., Keppner, H., Kroll, U., Shah, A., Greim, O., Morris, M., Pohl, J., Hapke, P., Carius, R., Proceedings of the 11th EC Photovoltaic Solar Energy Conference, Montreux, 1992, p. 617.Google Scholar
7.Meier, J., Dubail, S., Fischer, D., Anna Selvan, J. A., Pellaton Vaucher, N., Platz, R., Hof, C., Flückiger, R., Kroll, U., Wyrsch, N., Torres, P., Keppner, H., Shah, A., Ufert, K.-D., Proceedings of the 13th EC Photovoltaic Solar Energy Conference, Nice, 1995, p. 1445.Google Scholar
8.Meier, J., Dubail, S., Flückiger, R., Fischer, D., Keppner, H., Shah, A., Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, kHawaii, 1994, Vol. 1, pp. 409412.Google Scholar
9.Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Anna Selvan, J.A., Pellaton-Vaucher, N., Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Giannoulès, P., Koehler, J., to be published in the Proc. MRS 1996 Spring Meeting San Francisco.Google Scholar
10.Fischer, D., Dubail, S., Anna Selvan, J.A., Pellaton-Vaucher, N., Platz, R., Hof, Ch., Kroll, U., Meier, J., Torres, P., Keppner, H., Wyrsch, N., Goetz, M., Shah, A., Ufert, K.-D., Proc. 25th IEEE Photovoltaic Specialists Conference, Washington, 1996, Vol. 2 pp. 10531056.Google Scholar
11.Veprek, S., Iqbal, Z., Kühne, R. O., Capezzuto, P., Sarott, F-A and Gimzewski, J. K., J. Phys. C: Solid State Physics, 16, pp. 62416262, 1983.CrossRefGoogle Scholar
12.Kroll, U., Meier, J., Keppner, H., and Shah, A., J. Vac. Sci. Technol. A 13(6) p. 2742, 1995.CrossRefGoogle Scholar
13.Finger, F., Hapke, P., Lysberg, M., Carius, R., Wagner, H., Appl. Phys. Lett. 65(20), p. 247, 1994.CrossRefGoogle Scholar
14.Matsuda, A., Mashima, S., Hasezaki, K., Suzuki, A., Yamasaki, S. and McElhenny, P.J., Appl. Phys. Lett., 58, p. 2494, 1991.CrossRefGoogle Scholar
15.Kroll, U., PhD thesis University of Neuchâtel, Hartung & Gorre Verlag, Konstanz, ISBN 3–89191–905–0, 1995.Google Scholar
16.Hautala, J., Saleh, Z., Westendorp, J.F.M., Meiling, H., Sherman, S., and Wagner, S., to be published in the Proceedings of the MRS Spring Meeting, San Francisco, Vol. 420, 1996.Google Scholar
17.Imajyo, N., J. of Non-Cryst. Solids, 198–200, pp. 935939, 1995.Google Scholar
18.Sansonnens, L., Howling, A.A., Hollenstein, Ch., Dorier, J-L., and Kroll, U., J. Phys. D: Appl. Phys. 27, pp 14061411, 1994.CrossRefGoogle Scholar
19.Das, U. K. and Chaudhuri, P., Kshirsagar, S.T., J. Appl. Phys. 80(9) pp. 53895397, 1996.CrossRefGoogle Scholar
20.Perrin, J., Schmitt, J., Chem. Phys. 67, p. 167, 1982.CrossRefGoogle Scholar
21.Hamasaki, T., Kurata, H., Hirose, M., and Osaka, Y., Appl. Phys. Lett. 37, p. 1084, 1980.CrossRefGoogle Scholar
22.Middya, A. R., Guillet, J., Perrin, J., Lloret, A., and Bourrée, J. E., Proceedings of the 13th EC PV Conference, Nice, 1995, p. 1704.Google Scholar
23.Ferreira, C. M. and Loureiro, J., J. Appl. Phys. 57(1), p. 82, 1985.CrossRefGoogle Scholar
24.Kushner, M. J., J. Appl. Phys. 63(8), p. 2532, 1988.CrossRefGoogle Scholar
25.Veprek, S., Sarrott, F. -A. and Rambert, S., Taglauer, E., J. Vac. Sci. Technol. A 7(4) p. 2614, 1989.CrossRefGoogle Scholar
26.Heintze, M. and Zedlitz, R., Progress in Photovoltaics: Research and applications, 1, p. 213, 1993.CrossRefGoogle Scholar
27.Keppner, H., Kroll, U., Torres, P., Meier, J., Platz, R., Fischer, D., Beck, N., Dubail, S., Anna Selvan, J.A., Pellaton Vaucher, N., Goerlitzer, M., Ziegler, Y., Tscharner, R., Hof, Ch., Goetz, M., Pernet, P., Wyrsch, N., Vuille, J., Cuperus, J., and Shah, A., to be published at the NREL/SNL Photovoltaics Program review Meeting, Lakewood Co, 1996.Google Scholar
28.Kroll, U., Meier, J., Shah, A., Mikahaiov, S., Weber, J., J. Appl. Phys. 80, p. 4971, 1996.CrossRefGoogle Scholar
29.Velazco, J. E., Kolts, J. H., Setser, D. W., J. Chem. Phys., 69(10), p. 4357, 1978.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 3 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-54xgk Total loading time: 0.435 Render date: 2021-01-28T02:52:56.677Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The “Micromorph” Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The “Micromorph” Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The “Micromorph” Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *