Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-27T01:43:36.571Z Has data issue: false hasContentIssue false

Metalorganic Chemical Vapor Deposition of InP by Pulsing Precursors

Published online by Cambridge University Press:  28 February 2011

W. K. Chen
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buffalo, Amherst, N. Y. 14260
J. C. Chen
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buffalo, Amherst, N. Y. 14260
L. Anthony
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buffalo, Amherst, N. Y. 14260
P. L. Liu
Affiliation:
Center for Electronic and Electrooptic Materials, State University of New York at Buffalo, Amherst, N. Y. 14260
Get access

Abstract

We have grown InP by supplying precursors alternately into the reactor of a metalorganic chemical vapor deposition system. Epitaxial growth has been obtained with a substrate temperature as low as 330 °C. The growth process is mass-transport-limited in the temperature range of 420 to 580 °C. It is kinetic-controlled below 400 °C. At 340 °C, we have achieved monolayer growth in each cycle, i.e., atomic layer epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1Goodman, C. H. L., Pessa, M. V., J. Appl. Phys. 60, R65 (1986).Google Scholar
2Bedair, S. M., McDermott, B. T., IDE, Y., Karam, N. H., Hashemi, H., Tischler, M. A., Timmons, M., Tarn, J. C. L., and El-Masry, N., J. Crystal Growth 93, 182 (1988).Google Scholar
3Denbaars, S. P., Dapkus, P. D., Beyler, C. A., Hariz, A., and Dzurko, K. M., J. Crystal growth 93, 195 (1988).Google Scholar
4Jeong, W. G., Menu, E. P., and Dapkus, P. D., in First International Conference on Indium Phosphide and Related Materials for advanced Electronic and Optical Devices, Proc. SPIE, 1144,(1989). (in press)Google Scholar
5Kobayashi, N., Makimoto, T., and Horikoshi, Y., Jpn. J. Appl. Phys. 24, L962 (1985).Google Scholar
6Nishizawa, J., Kurabayashi, T., Abe, H., and Nozoe, A., Surface Sci. 185, 249 (1987).Google Scholar
7Sakuma, Y., Kodama, K., and Ozeki, M., Jpn. J. Appl. Phys. 27, L2189 (1988).Google Scholar
8Buchan, N. I., Larsen, C. A., and Stringfellow, , Appl. Phys. Lett. 51, 1024 (1987).Google Scholar
9Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L. P., J. Appl. Phys. 60, 1640 (1986).Google Scholar
10Chen, W. K., C Chen, J., Chen, J. F., Wie, C. R., Hwang, D. M., and Liu, P. L., in First International Conference on Indium Phosp)hide and Related Materials for Advanced Electronic and Optical Devices, Proc. SPIE, 1144 (1989). (in press)Google Scholar
11Chen, W. K., Chen, J. F., Chen, J. C., Kim, H. M., Anthony, L., Wie, C. R., and Liu, P. L., Appl. Phys. Lett. 55, 749 (1989).Google Scholar