Skip to main content Accessibility help
×
Home

Mechanical Spectroscopy in Advanced TiAl-Nb-Mo Alloys at High Temperature

Published online by Cambridge University Press:  10 March 2011

Pablo Simas
Affiliation:
Department of Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Thomas Schmoelzer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Maria L. Nó
Affiliation:
Department of Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Jose San Juan
Affiliation:
Department of Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Get access

Abstract

New advanced multi-phase γ-TiAl based alloys (TiAl-Nb-Mo), so called TNM alloys, have been developed to promote hot workability and to allow easier processing by conventional forging. However, to control and stabilize the final microstructure, specific processing and further thermal treatments are required. In the present work we used mechanical spectroscopy techniques to obtain a better understanding of the microstructural mechanisms taking place at high temperature applying two different heat treatments. Internal friction spectra and dynamic modulus evolution have been measured in an inverted torsion pendulum up to 1220 K. A stable relaxation peak was observed in both cases at about 1050 K for 1 Hz. Spectra acquired at several frequencies between 0.01 Hz and 3 Hz allow us to measure the activation parameters of this peak. In addition, a high temperature background (HTB) has been observed. This HTB, which has been found to be dependent on thermal treatments, has been analyzed to obtain the apparent activation enthalpy, which seems to be correlated to the creep behavior. Finally, we discuss the relaxation peak and the HTB in terms of the microstructural evolution during thermal treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Stoloff, N.S. and Sikka, V.K. (Eds.), Physical Metallurgy and Processing of Intermetallic Compounds. (Chapman and Hall, New York, 1996).CrossRefGoogle Scholar
2. Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A. and Bartels, A., Adv. Eng. Mat. 10, 707 (2008).CrossRefGoogle Scholar
3. Droessler, L., Schmoelzer, T., Wallgram, W., Cha, L., Das, G. and Clemens, H. in Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications, edited by Palm, M., Bewlay, B.P., Takeyama, M., Wiezorek, J.M.K., He, Y.-H. (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p. 121.Google Scholar
4. Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids. (Academic Press, New York, 1972).Google Scholar
5. San Juan, J., in Mechanical Spectroscopy Q-1 2001, edited by Schaller, R., Fantozzi, G. and Gremaud, G., (Trans Tech Publications, Uetikon, Switzerland, 2001) pp. 3273.Google Scholar
6. Kumpfert, J. and Leyens, C., In Titanium and Titanium Alloys, edited by Leyens, C. and Peters, M., (Wiley-VCH, Weinheim, Germany, 2003) pp 5988.Google Scholar
7. Schmoelzer, T., Liss, K.D., Zickler, G.A., Watson, I.J., Droessler, L.M., Wallgram, W., Buslaps, T., Stuber, A. and Clemens, H., Intermetallics 18, 1544 (2010).CrossRefGoogle Scholar
8. Simas, P., Master Thesis, University of the Basque Country, (2007).Google Scholar
9. Simas, P., San Juan, J., Schaller, R. and , M. L., Key. Eng. Mat. 423, 89 (2009).CrossRefGoogle Scholar
10. Weller, M., Haneczok, G., Kestler, H. and Clemens, H., Mater. Sci. Eng. A 370, 234 (2004).CrossRefGoogle Scholar
11. Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., in Gamma Titanium Aluminides 2003, edited by Kim, Y.W., Clemens, H. and Rosemberg, A.H.. (TMS, Warrendale, PA, USA, 2003) pp 451457.Google Scholar
12. Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., Mater. Sci. Eng. A 370, 240 (2004).CrossRefGoogle Scholar
13. , M.L., Esnouf, C., San Juan, J. and Fantozzi, G., Acta Metall. 36, 837 (1988).CrossRefGoogle Scholar
14. Rusing, J. and Herzig, C., Intermetallics 4, 647 (1996).CrossRefGoogle Scholar
15. Mishin, Y., Herzig, C., Act. Mat. 48, 589 (2000).CrossRefGoogle Scholar
16. Weller, M., Clemens, H., Haneczok, G., Dehm, G., Bartels, A., Bystrzanowski, S., Gerling, R. and Arzt, E., Phil. Mag. Letters 84, 383 (2004).CrossRefGoogle Scholar
17. Weller, M., Clemens, H. and Haneczok, G., Mat. Sci. Eng. A 442, 138 (2006).CrossRefGoogle Scholar
18. Simas, P., San Juan, J. and , M. L., Intermetallics 18, 1348 (2010).CrossRefGoogle Scholar
19. Wallgram, W., Schmölzer, T., Cha, L., Das, G., Güther, V. and Clemens, H., Int. J. Mat. Res. 8, 1021 (2009).CrossRefGoogle Scholar
20. Wen, C., Yasue, K., Lin, J., Zhang, Y., Chen, C., Intermetallics 8, 525 (2000).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-wsww6 Total loading time: 0.24 Render date: 2021-01-22T01:22:48.187Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanical Spectroscopy in Advanced TiAl-Nb-Mo Alloys at High Temperature
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanical Spectroscopy in Advanced TiAl-Nb-Mo Alloys at High Temperature
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanical Spectroscopy in Advanced TiAl-Nb-Mo Alloys at High Temperature
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *