Skip to main content Accessibility help
×
Home

Mechanical Properties and Magnetism: Stainless Steel Alloys from First-principles Theory

Published online by Cambridge University Press:  27 September 2011

L. Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden Division for Materials Theory, Department of Physics and Materials Science, Uppsala University, S-75120 Uppsala, Sweden Research Institute for Solid State Physics and Optics, P.O.Box 49, H-1525 Budapest, Hungary
H. L. Zhang
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
N. Al-Zoubi
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
S. Lu
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
J.-O. Nilsson
Affiliation:
AB Sandvik Materials Technology, SE-811 81 Sandviken, Sweden
S. Hertzman
Affiliation:
Outokumpu Stainless Research Foundation, Royal Institute of Technology, Stockholm SE-100 44, Sweden
B. Johansson
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden Division for Materials Theory, Department of Physics and Materials Science, Uppsala University, S-75120 Uppsala, Sweden
Get access

Abstract

Stainless steels are among the most important engineering materials, finding their principal scope in industry, specifically in cutlery, food production, storage, architecture, medical equipment, etc. Austenitic stainless steels form the largest sub-category of stainless steels having as the main building blocks the paramagnetic substitutional disordered Fe-Cr-Ni-based alloys. Because of that, austenitic steels represent the primary choice for non-magnetic engineering materials. The presence of the chemical and magnetic disorder hindered any previous attempt to calculate the fundamental electronic, structural and mechanical properties of austenitic stainless steels from first-principles theories. Our ability to reach an ab initio atomistic level approach in this exciting field has become possible by the Exact Muffin-Tin Orbitals (EMTO) method. This method, in combination with the coherent potential approximation, has proved an accurate tool in the description of the concentrated random alloys. Using the EMTO method, we presented an insight to the electronic and magnetic structure, and micromechanical properties of austenitic stainless steel alloys. In the present contribution, we will discuss the role of magnetism on the stacking fault energies and elastic properties of paramagnetic Fe-based alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Wranglén, G., An Introduction to Corrosion and Protection of Metals (Chapman and Hall, New York, 1985).CrossRefGoogle Scholar
2. Majumdar, A. K. and Blanckenhagen, P. v., Phys. Rev. B 29, 4079 (1984).CrossRefGoogle Scholar
3. Lung, C. W. and March, N. H., Mechanical Properties of Metals (World Scientific Publishing Co. Pte. Ltd., 1999).CrossRefGoogle Scholar
4. Fleischer, R. L., Acta Met. 11, 203 (1963); R. Labusch, Acta Met. 20, 917(1972); F. R. N. Nabarro, Philosophical magazine 35, 613 (1977).CrossRefGoogle Scholar
5. Speich, G. R., Schwoeble, A. J. and Leslie, W. C., Metallurgical Transactions 3, 2031 (1972).CrossRefGoogle Scholar
6. Ghosh, G. and Olson, G. B., Acta Materialia 50, 2655 (2002).CrossRefGoogle Scholar
7. Vitos, L., Korzhavyi, P. A., Nilsson, J.-O. and Johansson, B., Physica Scripta 77, 065703 (2008) and references therein.CrossRefGoogle Scholar
8. Ishida, K., Phys. Status Solidi (a) 36, 717 (1976).CrossRefGoogle Scholar
9. Grimvall, G., Phys. Scr. 13, 59 (1976).CrossRefGoogle Scholar
10. Vitos, L., Korzhavyi, P. A. and Johansson, B., Phys. Rev. Lett. 96,117210 (2006).CrossRefGoogle Scholar
11. Vitos, L., Nilsson, J.-O. and Johansson, B., Acta Materialia 54, 3821 (2006).CrossRefGoogle Scholar
12. Vitos, L., Korzhavyi, P. A. and Johansson, B., Nature Materials 2, 2528 (2003).CrossRefGoogle Scholar
13. Vitos, L., Korzhavyi, P. A. and Johansson, B., Phys. Rev. Lett. 88, 155501(4) (2002).CrossRefGoogle Scholar
14. Zhang, H. L., Johansson, B. and Vitos, L., Phys. Rev. B 79, 224201 (2009).CrossRefGoogle Scholar
15. Zhang, H. L., et al. , Phys. Rev. B 81, 184105 (2010).CrossRefGoogle Scholar
16. Zhang, H. L., et al. , J. Phys.: Condens. Matter 22, 275402 (2010).Google Scholar
17. Andersen, O. K., Jepsen, O. and Krier, G., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O. K., and Mookerjee, A., World Scientific Publishing Co., Singapore, pp. 63124 (1994).Google Scholar
18. Vitos, L., Phys. Rev. B 64, 014107 (2001).CrossRefGoogle Scholar
19. Vitos, L., Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications. Springer-Verlag London, Series: Engineering Materials and Processes (2007).Google Scholar
20. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
21. Kollár, J., Vitos, L. and Skriver, H. L., in Electronic Structure and Physical Properties of Solids: the Uses of the LMTO Method, Lectures Notes in Physics, edited by Dreyssé, H. (Springer-Verlag, Berlin, 2000), p. 85.CrossRefGoogle Scholar
22. Vitos, L., Abrikosov, I. A. and Johansson, B., Phys. Rev. Lett. 87, 156401(4) (2001).CrossRefGoogle Scholar
23. Soven, P., Phys. Rev. 156, 809 (1967); B. L. Györffy, Phys. Rev. B 5, 2382(1972).CrossRefGoogle Scholar
24. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
25. Györffy, B. L., Pindor, A. J., Stocks, G.M., Staunton, J., Winter, H., J. Phys. F 15, 1337 (1985).CrossRefGoogle Scholar
26. Magyari-Köpe, B., Vitos, L. and Grimvall, G., Phys. Rev. B 70, 052102 (2004).CrossRefGoogle Scholar
27. Taga, A., Vitos, L., Johansson, B. and Grimvall, G., Phys. Rev. B 71, 014201 (2005).CrossRefGoogle Scholar
28. Ropo, M., Kokko, K., Vitos, L. and Kollár, J., Phys. Rev. B 71, 045411 (2005).CrossRefGoogle Scholar
29. Delczeg-Czirjak, E. K., Delczeg, L., Ropo, M., Kokko, K., Punkkinen, M. P. J., Johansson, B. and Vitos, L., Phys. Rev. B 79, 085107 (2009).CrossRefGoogle Scholar
30. Magyari-Köpe, B., Vitos, L., Johansson, B. and Kollár, J., Acta Crystallogr. B57, 491 (2001).CrossRefGoogle Scholar
31. Magyari-Köpe, B., et al. , Phys. Rev. B 65, 193107 (2002).CrossRefGoogle Scholar
32. Vitos, L. and Johansson, B., Phys. Rev. B. 79,024415 (2009).CrossRefGoogle Scholar
33. Teklu, A., Ledbetter, H., Kim, S., Boatner, L. A., McGuire, M. and Keppens, V., Metall. Mater. Trans. A 35, 3149 (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-v228l Total loading time: 0.436 Render date: 2021-01-28T05:56:56.340Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanical Properties and Magnetism: Stainless Steel Alloys from First-principles Theory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanical Properties and Magnetism: Stainless Steel Alloys from First-principles Theory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanical Properties and Magnetism: Stainless Steel Alloys from First-principles Theory
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *