Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T16:31:38.169Z Has data issue: false hasContentIssue false

MBE Growth and Characterization of SxGe1−x Multilayer Structures on Si (100) for Use as a Substrate for GaAs Heteroepitaxy

Published online by Cambridge University Press:  22 February 2011

J. B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
D. P. Malta
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
R. Venkatasubramanian
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
P. R. Sharps
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
M. L. Timmons
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
R. J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709–2194
T. P. Humphreys
Affiliation:
Dept. of Physics, North Carolina State University, Raleigh, NC 27695–8202
N. R. Parikh
Affiliation:
Dept. of Physics & Astronomy, Univ. of North Carolina, Chapel Hill, NC 27599–3255
Get access

Abstract

Investigation has continued into the use of SixGe1−x multilayer structures (MLS) as a buffer layer between a Si substrate and a GaAs epitaxial layer in order to accommodate the 4.1% lattice mismatch. SixGe1−x 4-layer and 5-layer structures terminating in pure Ge have been grown using molecular beam epitaxy. Subsequent GaAs heteroepitaxy has allowed evaluation of these various GaAs/SixGe1−xMLS/Si (100) structures. Antiphase domain boundaries have been eliminated using vicinal Si (100) substrates tilted 6° off-axis toward [011], and the etch pit density in GaAs grown on a 5-layer SixGe1−x MLS on vicinal Si (lOO) was measured to be 106 cm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shaw, D., Mater. Res. Soc. Symp. Proc. 91, 15 (1987).Google Scholar
2. Chand, N., Ren, F., Macrander, A. T., van der Ziel, J. P., Sergent, A. M., Hull, R., Chu, S. N. G., Chen, Y. K., and Lang, D. V., J. Appl. Phys. 67, 2343 (1990).CrossRefGoogle Scholar
3. Posthill, J. B., Venkatasubramanian, R., Malta, D. P., Hattangady, S. V., Fountain, G. G., Tim-mons, M. L., and Markunas, R. J., Mater. Res. Soc. Symp. Proc. 198, 219 (1990).CrossRefGoogle Scholar
4. Baribeau, J. M., Jackman, T. E., Houghton, D. C., Maigne, P., and Denhoff, M. W., J. Appl. Phys. 61, 5738 (1988).Google Scholar
5. Dupuis, R. D., Bean, J. C., Brown, J. M., Macrander, A. T., Miller, R. C., and Hopkins, L. C., J. Elect. Mater. 16, 69 (1987).CrossRefGoogle Scholar
6. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
7. Venkatasubramanian, R., Timmons, M. L., Posthill, J. B., Keyes, B. M., and Ahrenkiel, R. K., J. Cryst. Growth 107, 489 (1991).CrossRefGoogle Scholar
8. Sharps, P. R., Timmons, M. L., and Colpitts, T. S., Appl. Phys. Lett. 58, 2006 (1991).Google Scholar
9. Malta, D. P., Posthill, J. B., Venkatasubramanian, R., Timmons, M. L., Humphreys, T. P., Das, K., and Markunas, R. J., Proc. XIIth Intl. Congress for Electron Microscopy, Eds. Peachey, L. D. and Williams, D. B., 4, 746 (1990).Google Scholar
10. Abrahams, M. S. and Buicchi, C. J., J. Appl. Phys. 36, 2855 (1965) [Part A and part B mixed in 1:1 ratio before use. A: 40ml HF, 40ml H2O, and 0.3g AgNO3; B: 40ml H2O and 40g CrO3].CrossRefGoogle Scholar