Skip to main content Accessibility help
×
Home

Manufacturing of Hybrid Composites and Novel Methods to Synthesize Carbon Nanoparticles

Published online by Cambridge University Press:  01 February 2011

F. C. Robles Hernández
Affiliation:
University of Houston, Department of Mechanical Engineering Technology, College of Technology, 304 Technology Building, Houston, TX 77204–4020.
Get access

Abstract

In following are presented the characterization results of nanostructured hybrid composites using alumina matrix reinforced with nanostructured particles of Ni, Ti and soot. The soot used in this work is the byproduct from the synthesis of Carbon Nanotubes (CNT) or fullerene and contains traces (>1wt%) of either CNT or fullerene. Ni and Ti are used in this work for their inherent catalytic ability for heterogeneous nucleation of carbon nanostructures (nanotubes, fullerenes). The hybrid composites are produced by a combination of methods including mechanical milling, sonication, and Spark Plasma Sintering (SPS). Mechanical milling is conducted in high energy mills, the milled and as manufactured powders are sonicated to assure their dispersion, homogeneity and promote percolation of the components during sintering. Mechanical milling and SPS have positive effects to promote the synthesis of different carbon nanoparticles. For instance, it is observed that mechanical milling of fullerene soot sponsors the synthesis of nanostructured diamond particles and using SPS can be synthesized diamond too and fullerene. Although, it is important to notice that SPS conditions are critical to the amount and type of synthesized particles. The use of CNT soot sponsors porosity, hence lower density resulting in an ideal material for membrane and porous media applications. The results of characterization (X-Ray diffraction, electron microscopy (scanning and transmission)) and the mechanical properties (Vickers microhardness) are discussed accordingly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Harris, P. J. F., Carbon nanotubes and related structures, Cambridge University Press, Cambridge 1999.CrossRefGoogle Scholar
2. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E., C60: Buckminsterfullerene, Nature, 318, 162163 (1985).CrossRefGoogle Scholar
3. Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 5658 (1991).Google Scholar
4. Ru, Q., Kamoto, M., Kondo, Y., Takayanagi, K., Attraction and orientation phenomena of bucky onions formed in a transmission electron microscope, Chem Phys Lett 259, 425431 (1996).Google Scholar
5. Ugarte, D., Curling and closure of graphitic networks under electron-beam irradiation, Nature, 359 (1992) 707–709.Google Scholar
6. Terrones, H., Terrones, M., The transformation of polyhedral particles into graphitic onions, J Phys Chem Solids, 58 17891796 (1997).Google Scholar
7. Treacy, M. M., Ebbesen, T. W., Gibson, J. M., Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381, 678 (1996).Google Scholar
8. Lourie, O., Cox, D. M., Wagner, H. D., Buckling and Collapse of Embedded Carbon Nanotubes, Phys Rev Lett., 81, 16381641 (1998).Google Scholar
9. Umemoto, M., Masuyama, K., Raviprasad, K., Mechanical Alloying of Fullerene with Metal, Mats. Sci. Forum 47, 235238 (1997).Google Scholar
10. Robles Hernandez, F. C., Production and Characterization of Composites Metal-C (where Metal= Fe or Al and C= Graphite or Fullerene) Obtained from Mechanically Alloyed Powders, MSc Thesis, Instituto Politécnico Nacionál, Departamento de Ingeniería Metalúrgica, Mexico, 1999.Google Scholar
11. Robles Hernández, F. C., Calderón, H. A., “Nanostructured Metal Composites Reinforced with Fullerenes”, JOM, 62, 2, 2010, 63–68.CrossRefGoogle Scholar
12. Robles Hernández, F. C., Calderón, H. A., “Synthesis of fullerene on Fe-C composites by Spark Plasma Sintering and its thermomechanical transformation to diamond”, MRS Proceedings, 1243, 2010.Google Scholar
13. Sun, L., Banhart, F., Krasheninnikov, A. V., Rodrguez-Manzo, J. A., Terrones, M., Ajayan, P. M., Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders, Science, 312 11991202 (2006).Google Scholar
14. Garibay-Febles, V., Calderon, H. A., Robles-Hernández, F. C., Umemoto, M., Masuyama, K., Cabañas-Moreno, J. G., Production and Characterization of (Al, Fe)-C (Graphite or Fullerene) Composites Prepared by Mechanical Alloying, Mats & Manufac Processes, 15, 547567 (2000).Google Scholar
15. Zhan, G-D., Kuntz, J., Wan, J., Garay, J., Mukherjee, A. K., “A Novel Processing Route to Develop a Dense Nanocrystalline Alumina Matrix (<100 nm) Nanocomposite Material, J. Am. Ceram. Soc., 86, 200202 (2002).Google Scholar
16. Zhan, G-D., Kuntz, J., Wan, J., Garay, J., Mukherjee, A. K., Alumina-based nanocomposites consolidated by spark plasma sintering, Scripta Materialia 47, 737741 (2002).Google Scholar
17. Zapata-Solvas, E., Gomez-Garcia, D., Poyato, R., Lee, Z., Castillo-Rodriguez, M., Dominguez-Rodriguez, A., Radmilovic, V., Padture, N. P., Microstructural Effects on the Creep Deformation of Alumina/Single-Wall Carbon Nanotubes Composites, J. Am. Ceram. Soc., 93, 7, 20422047 (2010)Google Scholar
18. Zhan, G-D., Kuntz, J. D., Garay, J. E., Mukherjee, A. K., Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, 83, 6, 12281230 (2003).Google Scholar
19. Gilman, P.S. and Benjamin, J.S., Ann. Rev. Mater. Sci. 13, 279 (1983).CrossRefGoogle Scholar
20. Suryanarayana, C., Prog. Mater Sci. 46, 1, (2001).CrossRefGoogle Scholar
21. Ownby, P. D., Yang, X., Liu, J., Calculated X-ray Diffraction Data for Diamond Polytypes, J Am. Ceram. SOC., 75, 7 (1992) 1876–83.Google Scholar
22. Santana-García, I., Hernandez-Robles, F.C., Garibay-Febles, V., H. A. Calderon Metal (Fe, Al)-Fullerene Nanocomposites: Synthesis and Characterization, Microscopy and Microanalysis, 16, S2 (2010) 16881689.Google Scholar
23. Xia, Z., Riester, L., Sheldon, B. W., Curtin, W. A., Liang, J., Yin, A., Xu, J. M., Mechanical properties of highly ordered nanoporous anodic alumina membranes, Rev. Adv. Mat. Sci. 6, 2004, 131139.Google Scholar
24. Krell, A., Blank, P., Grain size dependence of hardness in dense sub micrometric alumina, J. Am. Ceram. Soc., 78, 4, (1195) 11181120.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-zjqt5 Total loading time: 0.28 Render date: 2021-01-15T15:53:06.280Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 15:51:53 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Manufacturing of Hybrid Composites and Novel Methods to Synthesize Carbon Nanoparticles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Manufacturing of Hybrid Composites and Novel Methods to Synthesize Carbon Nanoparticles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Manufacturing of Hybrid Composites and Novel Methods to Synthesize Carbon Nanoparticles
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *